803 resultados para oil sludge
Resumo:
The present work has two dimensions: analytical and environmental. On the one hand we proved that thermogravimetric analysis can be used to perform fast characterization of oil refinery sludge. To this end, thermogravimetric curves were deconvoluted by using autocatalytic kinetics to take into account acceleratory phases in a thermal degradation performed in oxygen-containing atmosphere or at high heating rates. Based on thermogravimetric results, oil refinery sludge was modeled in terms of various fractions (pseudo-components) which degrade as major oil cuts. On the other hand, as an alternative to landfill, we have seen that Soxhlet extraction allows recovery almost half of the weight of sludge as a mixture of hydrocarbons, similar to gas–oil, which burns without residue. This ensures both, waste inerting and significant reduction in sludge volume.
Resumo:
In this study wastewater treatment plant (WWTP) sludge was subjected to a reactive pyrolysis treatment to produce a high quality pyro-oil. Sludge was treated in supercritical conditions in the presence of methanol using hexane as cosolvent in a high pressure lab-autoclave. The variables affecting the pyro-oil yield and the product quality, such as mass ratio of alcohol to sludge, presence of cosolvent and temperature, were investigated. It was found that the use of a non-polar cosolvent (hexane) presents advantages in the production of high quality pyro-oil from sludge: increase of the non-polar pyro-oil yield and a considerable reduction of the amount of methanol needed to carry out the transesterification of fatty acids present in the sludge.
Resumo:
This thesis is a study of naturally occurring radioactive materials (NORM) activity concentration, gamma dose rate and radon (222Rn) exhalation from the waste streams of large-scale onshore petroleum operations. Types of activities covered included; sludge recovery from separation tanks, sludge farming, NORM storage, scaling in oil tubulars, scaling in gas production and sedimentation in produced water evaporation ponds. Field work was conducted in the arid desert terrain of an operational oil exploration and production region in the Sultanate of Oman. The main radionuclides found were 226Ra and 210Pb (238U - series), 228Ra and 228Th (232Th - series), and 227Ac (235U - series), along with 40K. All activity concentrations were higher than the ambient soil level and varied over several orders of magnitude. The range of gamma dose rates at a 1 m height above ground for the farm treated sludge had a range of 0.06 0.43 µSv h 1, and an average close to the ambient soil mean of 0.086 ± 0.014 µSv h 1, whereas the untreated sludge gamma dose rates had a range of 0.07 1.78 µSv h 1, and a mean of 0.456 ± 0.303 µSv h 1. The geometric mean of ambient soil 222Rn exhalation rate for area surrounding the sludge was mBq m 2 s 1. Radon exhalation rates reported in oil waste products were all higher than the ambient soil value and varied over three orders of magnitude. This study resulted in some unique findings including: (i) detection of radiotoxic 227Ac in the oil scales and sludge, (ii) need of a new empirical relation between petroleum sludge activity concentrations and gamma dose rates, and (iii) assessment of exhalation of 222Rn from oil sludge. Additionally the study investigated a method to determine oil scale and sludge age by the use of inherent behaviour of radionuclides as 228Ra:226Ra and 228Th:228Ra activity ratios.
Resumo:
含油污泥已作为危险废物列入《国家危险废物名录》(HW08),其处理问题已成为环保领域研究的热点。热洗技术是含油污泥处理的主流技术,而清洗药剂作为该技术的核心,直接影响含油污泥的处理指标与效率。目前,适合热洗处理的化学药剂很少,迫切需要开发专用药剂技术。针对含油污泥清洗效率的难题,本文合成了一种新型高效的含油污泥清洗剂。 本文以甲基丙烯酸(MAA)、丙烯酸丁酯(BA)和苯乙烯(St)为混合单体,偶氮二异丁腈(AIBN)为引发剂,通过溶液聚合的方法探索合成了一种高分子聚合物(命名为MBS)。分析讨论了MBS关键单体的选择、合成设计及方法,检测了MBS有关物理化学性能,考察了单体、引发剂用量及清洗条件对MBS脱油性能的影响,探讨了MBS对含油污泥中原油不同组分的去除效率,并用红外光谱证实了MBS结构的官能团。 MBS在单体质量比为MAA:BA:St=21:62:17,引发剂AIBN为单体总量的1.2%时,含油污泥脱油率可达84%以上。MBS对于含油污泥中芳烃去除率最高,为93.0%;其次是烷烃,去除率为87.4%;沥青质、胶质最低,去除率为71.8%,具有良好的处理效果。 本文还针对目前国内尚无评价含油污泥清洗剂的标准方法,对清洗剂性能评价进行了初探,采用统一标准的模拟含油污泥进行清洗剂性能评价,并提出了制备方法,同时验证了在此基础上所建立的性能评价方法。结果证明,模拟含油污泥能够真实体现清洗剂的脱油性能,所建立的评价方法可以作为一种通用规范的含油污泥清洗剂性能评价的基本方法。
Resumo:
Aiming to reduce and reuse waste oil from oily sludge generated in large volumes by the oil industry, types of nanostructured materials Al-MCM-41 and Al-SBA-15, with ratios of Si / Al = 50, were synthesized , and calcined solids used as catalysts in the degradation of oily sludge thermocatalytic oil from oilfield Canto do Amaro, in the state of Rio Grande do Norte. Samples of nanostructured materials were characterized by thermogravimetric analysis (TG / DTG), X-ray diffraction (XRD), scanning electron microscopy (SEM), absorption spectroscopy in the infrared Fourier transform (FT-IR) and adsorption nitrogen (BET). The characterization showed that the synthesized materials resulted in a catalyst nanostructure, and ordered pore diameter and surface area according to existing literature. The oily sludge sample was characterized by determining the API gravity and sulfur content and SARA analysis (saturates, aromatics, resins and asphaltenes). The results showed a material equivalent to the average oil with API gravity of 26.1, a low sulfur content and considerable amount of resins and asphaltenes, presented above in the literature. The thermal and catalytic degradation of the oily sludge oil was performed from room temperature to 870 ° C in the ratios of heating of 5, 10 and 20 ° C min-1. The curves generated by TG / DTG showed a more accelerated degradation of oily sludge when it introduced the nanostructured materials. These results were confirmed by activation energy calculated by the method of Flynn-Wall, in the presence of catalysts reduced energy, in particular in the range of cracking, showing the process efficiency, mainly for extraction of lightweight materials of composition of oily sludge, such as diesel and gasoline
Resumo:
The petroleum industry, in consequence of an intense activity of exploration and production, is responsible by great part of the generation of residues, which are considered toxic and pollutants to the environment. Among these, the oil sludge is found produced during the production, transportation and refine phases. This work had the purpose to develop a process to recovery the oil present in oil sludge, in order to use the recovered oil as fuel or return it to the refining plant. From the preliminary tests, were identified the most important independent variables, like: temperature, contact time, solvents and acid volumes. Initially, a series of parameters to characterize the oil sludge was determined to characterize its. A special extractor was projected to work with oily waste. Two experimental designs were applied: fractional factorial and Doehlert. The tests were carried out in batch process to the conditions of the experimental designs applied. The efficiency obtained in the oil extraction process was 70%, in average. Oil sludge is composed of 36,2% of oil, 16,8% of ash, 40% of water and 7% of volatile constituents. However, the statistical analysis showed that the quadratic model was not well fitted to the process with a relative low determination coefficient (60,6%). This occurred due to the complexity of the oil sludge. To obtain a model able to represent the experiments, the mathematical model was used, the so called artificial neural networks (RNA), which was generated, initially, with 2, 4, 5, 6, 7 and 8 neurons in the hidden layer, 64 experimental results and 10000 presentations (interactions). Lesser dispersions were verified between the experimental and calculated values using 4 neurons, regarding the proportion of experimental points and estimated parameters. The analysis of the average deviations of the test divided by the respective training showed up that 2150 presentations resulted in the best value parameters. For the new model, the determination coefficient was 87,5%, which is quite satisfactory for the studied system
Resumo:
During the storage of oil, sludge is formed in the bottoms of tanks, due to decantation, since the sludge is composed of a large quantity of oil (heavy petroleum fractions), water and solids. The oil sludge is a complex viscous mixture which is considered as a hazardous waste. It is then necessary to develop methods and technologies that optimize the cleaning process, oil extraction and applications in industry. Therefore, this study aimed to determine the composition of the oil sludge, to obtain and characterize microemulsion systems (MES), and to study their applications in the treatment of sludge. In this context, the Soxhlet extraction of crude oil sludge and aged sludge was carried out, and allowing to quantify the oil (43.9 % and 84.7 % - 13 ºAPI), water (38.7 % and 9.15 %) and solid (17.3 % and 6.15 %) contents, respectively. The residues were characterized using the techniques of X-ray fluorescence (XRF), Xray diffraction (XRD) and transmission Infrared (FT-IR). The XRF technique determined the presence of iron and sulfur in higher proportions, confirming by XRD the presence of the following minerals: Pyrite (FeS2), Pyrrhotite (FeS) and Magnetite (Fe3O4). The FT-IR showed the presence of heavy oil fractions. In parallel, twelve MES were prepared, combining the following constituents: two nonionic surfactants (Unitol L90 and Renex 110 - S), three cosurfactants (butanol, sec-butanol and isoamyl alcohol - C), three aqueous phase (tap water - ADT, acidic solution 6 % HCl, and saline solution - 3.5 % NaCl - AP) and an oil phase (kerosene - OP). From the obtained systems, a common point was chosen belonging to the microemulsion region (25 % [C+S] 5 % OP and AP 70 %), which was characterized at room temperature (25°C) by viscosity (Haake Rheometer Mars), particle diameter (Zeta Plus) and thermal stability. Mixtures with this composition were applied to oil sludge solubilization under agitation at a ratio of 1:4, by varying time and temperature. The efficiencies of solubilization were obtained excluding the solids, which ranged between 73.5 % and 95 %. Thus, two particular systems were selected for use in storage tanks, with efficiencies of oil sludge solubilization over 90 %, which proved the effectiveness of the MES. The factorial design delimited within the domain showed how the MES constituents affect the solubilization of aged oil sludge, as predictive models. The MES A was chosen as the best system, which solubilized a high amount of aged crude oil sludge (~ 151.7 g / L per MES)
Resumo:
Alkyl polyethoxylates are surfactants widely used in vastly different fields, from oil exploitation to pharmaceutical applications. One of the most interesting characteristics of these surfactants is their ability to form micellar systems with specific geometry, the so-called wormlike micelle. In this work, microemulsions with three distinct compositions (C/T = 40 %, 30 % and 25 %) was used with contain UNITOL / butanol / water / xylene, cosurfactant / surfactante (C/S) ratio equal to 0,5. The microemulsion was characterized by dynamic light scattering (DLS), capillary viscometry, torque rheometry and surface tensiometry experiments carried out with systems based on xylene, water, butanol (cosurfactant) and nonaethyleneglycolmonododecyl ether (surfactant), with fixed surfactant:cosurfactant:oil composition (with and without oil phase) and varying the overall concentration of the microemulsion. The results showed that a transition from wormlike micelles to nanodrops was characterized by maximum relative viscosity (depending on how relative viscosity was defined), which was connected to maximum effective diameter, determined by DLS. Surface tension suggested that adsorption at the air water interface had a Langmuir character and that the limiting value of the surfactant surface excess was independent of the presence of cosurfactant and xylene. The results of the solubilization of oil sludge and oil recovery with the microemulsion: C/S = 40%, 30% and 25% proved to be quite effective in solubilization of oil sludge, with the percentage of solubilization (%solubilization) as high as 92.37% and enhanced oil recovery rates up to 90.22% for the point with the highest concentration of active material (surfactant), that is, 40%.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Aiming to reduce and reuse waste oil from oily sludge generated in large volumes by the oil industry, types of nanostructured materials Al-MCM-41 and Al-SBA-15, with ratios of Si / Al = 50, were synthesized , and calcined solids used as catalysts in the degradation of oily sludge thermocatalytic oil from oilfield Canto do Amaro, in the state of Rio Grande do Norte. Samples of nanostructured materials were characterized by thermogravimetric analysis (TG / DTG), X-ray diffraction (XRD), scanning electron microscopy (SEM), absorption spectroscopy in the infrared Fourier transform (FT-IR) and adsorption nitrogen (BET). The characterization showed that the synthesized materials resulted in a catalyst nanostructure, and ordered pore diameter and surface area according to existing literature. The oily sludge sample was characterized by determining the API gravity and sulfur content and SARA analysis (saturates, aromatics, resins and asphaltenes). The results showed a material equivalent to the average oil with API gravity of 26.1, a low sulfur content and considerable amount of resins and asphaltenes, presented above in the literature. The thermal and catalytic degradation of the oily sludge oil was performed from room temperature to 870 ° C in the ratios of heating of 5, 10 and 20 ° C min-1. The curves generated by TG / DTG showed a more accelerated degradation of oily sludge when it introduced the nanostructured materials. These results were confirmed by activation energy calculated by the method of Flynn-Wall, in the presence of catalysts reduced energy, in particular in the range of cracking, showing the process efficiency, mainly for extraction of lightweight materials of composition of oily sludge, such as diesel and gasoline
Resumo:
The objective of this research is to study the feasibility of bioremediating the oily sludge from a refinery site. Three different methods of waste treatment were tried i.e. phytoremediation, land farming and microbial enhanced oil separation in laboratory scale treatment systems. A multiprocess approach by combination of phytoremediation, biostimulation and microbial enhanced oil separation is also presented. The methods of analysis, experimental procedure, and results are incorporated into five chapters of this thesis entitled "Bioremediation of petroleum sludge through phytoremediation, land farming and microbial enhanced oil separation.
Resumo:
The Corymbia citriodora is one of the most important forest species in Brazil and the reason is the diversity of its use, because it produces good quality wood and the leaves may be used for essential oil production. Although, there are not many studies about species and the handling effect in the nutritional balance. This study aimed to evaluate the biomass production and nutrient balance in the conventional production of essential oil and wood of Corymbia citriodora with sewage sludge application. The experiment design established was the randomized blocks, with four replicates and two treatments: 1 - fertilization with 10 tons ha(-1) (dry mass) of sewage sludge, supplemented with K and B, and 2 - mineral fertilization. It was evaluated the aerial biomass production, the nutrient export of the leaves, the essential oil and wood production at four years old. The trees that received application of sewage sludge produced 20 % more leaves biomass than the trees with mineral fertilization, resulting in larger oil production. Besides, the trees with sewage sludge application produced 14.2 tons ha(-1) yr(-1) of woody biomass that was 27 % higher than the treatment with mineral fertilization. For both treatments the N balance was negative, but treatment with sewage sludge application (-45 kg ha(-1)) was four times lower than the observed on mineral fertilization treatment (-185 kg ha(-1)). It may be concluded in this paper that the application of sewage sludge benefits the production of leaves biomass, essential oil and wood, besides result better nutritional balance of the Corymbia citriodora production system.
Resumo:
Sewage sludge was pyrolysed with 40% mixed wood, 40% rapeseed and 40% straw. The reason for the mixture of different biomass is to investigate the impact of co-pyrolysis on the upper phase of bio-oil in terms of changes to composition, elemental analysis, viscosity, water content, pH, higher heating value and acid number that could impact on their applications. The biomass was pyrolysed in a laboratory at 450 °C and bio-oil was collected from two cooling traps. The bio-oil obtained from co-pyrolysis of sewage sludge with wood, rapeseed and straw was analysed for composition using the gas chromatography mass spectrometry. The upper phase from the co-pyrolysis process was also characterised for ultimate analysis, higher heating values, water content, viscosity, pH and acid number. There was an increase in the amount of upper phase produced with co-pyrolysis of 40% rapeseed. It was also found that the upper phase from sewage sludge with mixed wood has the highest viscosity, acid number and lowest pH. The bio-oil containing 40% straw was found to have a pH of 6.5 with a very low acid number while the 40% rapeseed was found to have no acid number. Sewage sludge with 40% rapeseed was found to have the highest energy content of 34.8 MJ/kg, 40% straw has 32.5 MJ/kg while the 40% mixed wood pyrolysis oil has the lowest energy content of 31.3 MJ/kg. The 40% rapeseed fraction was found to have the highest water content of 8.2% compared to other fractions.