160 resultados para oestrogen
Resumo:
Objectives This study evaluated the influence of oestrogen deficiency and its therapies on bone tissue around osseointegrated implants. Methods Implants were placed in 66 female rats tibiae. The animals were assigned into five groups: control (CTL), sham, ovariectomy (OVX), oestrogen (EST), and alendronate (ALE). While CTL was sacrificed 60 days after implant placement, other groups were subjected to ovariectomy or sham surgery according to group and euthanized after 90 days. Blood and urine samples were collected at sacrifice day for osteocalcin (OCN) and deoxypyridinoline (DPD) quantification. Densitometry of femur and lumbar vertebrae was performed in order to evaluate rats` skeletal impairment. Non-decalcified sections were referred to fluorescent and light microscopy for analyses of mineral apposition rate (MAR), eroded and osteoclastic surfaces, bone-to-implant contact (BIC), and bone area fraction occupancy (BAFO). Results Results from the OVX group showed significantly lower bone mineral density (BMD), BIC, BAFO, and MAR, while OCN, deoxipiridinoline, eroded surface and ostecoclastic surface were increased compared with the other groups of the study. ALE reduced OCN and DPD concentrations, MAR, osteoclastic and eroded surfaces, and no difference was in BIC and BAFO relative to SHAM. EST and CTL showed similar results to SHAM for measurements. Conclusions Oestrogen deficiency exerted a negative influence on bone tissue around implants, while oestrogen replacement therapy and alendronate were effective against its effects. Although alendronate therapy maintained the quantity of bone around implants, studies evaluating bone turnover kinetics are warranted. To cite this article:Giro G, Coelho PG, Pereira RMR, Jorgetti V, Marcantonio E Jr, Orrico SRP. The effect of oestrogen and alendronate therapies on postmenopausal bone loss around osseointegrated titanium implants.Clin. Oral Impl. Res. 22, 2011; 259-264.doi: 10.1111/j.1600-0501.2010.01989.x.
Resumo:
The interaction between the reproductive axis and energy balance suggests that leptin acts as a possible mediator. This hormone acts in the regulation of metabolism, feeding behaviour and reproduction. Animals homozygous for the gene `ob` (ob/ob) are obese and infertile, and these effects are reversed after systemic administration of leptin. Thus, the present study aimed to determine: (i) whether cells that express leptin also express oestrogen receptors of type-alpha (ER-alpha) or -beta (ER-beta) in the medial preoptic area (MPOA) and in the arcuate (ARC), dorsomedial (DMH) and ventromedial hypothalamic nucleus and (ii) whether there is change in the gene and protein expression of leptin in these brain areas in ovariectomised (OVX) animals when oestrogen-primed. Wistar female rats with normal oestrous cycles or ovariectomised oestrogen-primed or vehicle (oil)-primed were utilised. To determine whether there was a co-expression, immunofluorescence was utilised for double staining. Confocal microscopy was used to confirm the co-expression. The technique of real-time polymerase chain reaction and western blotting were employed to analyse gene and protein expression, respectively. The results obtained showed co-expression of leptin and ER-alpha in the MPOA and in the DMH, as well as leptin and ER-beta in the MPOA, DMH and ARC. However, we did not detect leptin in the MPOA, ARC and DMH using western blotting and there was no statistical difference in leptin gene expression in the MPOA, DMH, ARC, pituitary or adipose tissue between OVX rats treated with oestrogen or vehicle. In conclusion, the results obtained in the present study confirm that the brain is also a source of leptin and reveal co-expression of oestrogen receptors and leptin in the same cells from areas related to reproductive function and feeding behaviour. Although these data corroborate the previous evidence obtained concerning the interaction between the action of brain leptin and reproductive function, the physiological relevance of this interaction remains uncertain and additional studies are necessary to elucidate the exact role of central leptin.
Resumo:
The aim of this research was to analyze oestrogen receptor-alpha (ER alpha), ER beta and progesterone receptor (PR) gene expression in the canine oocyte and cumulus cells throughout the oestrous cycle. Ovaries from 38 bitches were recovered after ovariohysterectomy and sliced. The phase of the oestrous cycle was determined by vaginal cytology, vaginoscopy and serum hormonal measurements. Oocytes were mechanically denuded by repeated pipetting. For each phase of the cycle, a sample was composed by a pool of 50 oocytes (sample number: prooestrus = 3, oestrus = 8, dioestrus = 5 and anoestrus = 5) or a pool of cumulus cells (prooestrus = 4, oestrus = 7, dioestrus = 4 and anoestrus = 6). Oocyte and cumulus cells` total RNA was isolated and reverse transcription was conducted to perform real-time PCR. Oestrogen receptor-alpha was expressed throughout the cycle in the oocyte (33.33%, 25.0%, 20.0% and 60.0% for prooestrus, oestrus, dioestrus and anoestrus, respectively) and cumulus cells (50.0%, 47.14%, 25.0% and 66.67% for prooestrus, oestrus, dioestrus and anoestrus, respectively). In the oocyte, the ER beta was also expressed in all phases of the cycle (33.33%, 50.0%, 20.0% and 60.0% for prooestrus, oestrus, dioestrus and anoestrus, respectively), whereas in cumulus cells, ER beta was only expressed during prooestrus (50%) and oestrus (14.29%). Interestingly, while the oocyte PR was not detected in any phase of the cycle, this receptor was expressed during prooestrus (50%), oestrus (42.86%) and anoestrus (16.67%) in cumulus cells. In conclusion, canine oocytes express ER alpha and ER beta throughout the oestrous cycle, however, there is a lack of PR expression in all these phases. Moreover, in cumulus cells, only ER alpha was expressed throughout the oestrous cycle.
Resumo:
A secretory surge of prolactin occurs on the afternoon of oestrous in cycling rats. Although prolactin is regulated by ovarian steroids, plasma oestradiol and progesterone levels do not vary during oestrous. Because prolactin release is tonically inhibited by hypothalamic dopamine and modulated by dopamine transmission in the preoptic area (POA), the present study aimed to evaluate whether oestrogen receptor (ER)-alpha and progestin receptor (PR) expression in the dopaminergic neurones of arcuate (ARC), periventricular, anteroventral periventricular (AVPe) and ventromedial preoptic (VMPO) nuclei changes during the day of oestrous. Cycling rats were perfused every 2 h from 10-20 h on oestrous. Brain sections were double-labelled to ER alpha or PR and tyrosine hydroxylase (TH). The number of TH-immunoreactive (ir) neurones did not vary significantly in any area evaluated. ER alpha expression in TH-ir neurones increased at 14 and 16 h in the rostral-ARC and dorsomedial-ARC, 14 h in the caudal-ARC and 16 h in the VMPO, whereas it was unaltered in the ventrolateral-ARC, periventricular and AVPe. PR expression in TH-ir neurones of the periventricular and rostral, dorsomedial, ventrolateral and caudal-ARC decreased transitorily during the afternoon, showing the lowest levels between 14 and 16 h; but it did not vary in the AVPe and VMPO. Plasma oestradiol and progesterone concentrations were low and unaltered during oestrous, indicating that the changes in receptors expression were probably not due to variation in ligand levels. Thus, our data suggest that variations in ER alpha and PR expression may promote changes in the activity of medial basal hypothalamus and POA dopaminergic neurones, even under unaltered secretion of ovarian steroids, which could facilitate the occurrence and modulate the magnitude of the prolactin surge on oestrous.
Resumo:
INTRODUCTION: The responsibility of Schistosoma mansoni in female infertility is still controversial. This study was conducted to evaluate the effect of acute and chronic schistosomiasis mansoni infection on the endometrium using immunohistochemical analysis of uterine hormone receptor expression. METHODS: Twenty-four nonpregnant swiss albino mice were divided into three groups: control, noninfected; acute; and chronic Schistosoma mansoni infection. Histological sections of uterine specimens were examined by light microscope with an image analyzing system to detect structural histological, estrogen receptor (ER) and progesterone receptor (PR) expression in the endometrium. RESULTS: No secretory phase was detected in the endometrium in acute and chronic Schistosoma infection. Hormone receptor expression (ER and PR) showed statistically significant differences among the groups (p< 0.05), with significant low ER hormone expression in chronic infection, compared to control proliferative, control secretory and acute infection cases, and statistically significant high PR expression in both acute and chronic infection cases compared to the control secretory cases (p< 0.05). CONCLUSIONS: Schistosomiasis mansoni seems to have an important impact on the hormone expression of affected women. Further studies to explore the mechanism of such changes are recommended.
Resumo:
In Rendu-Osler disease, haemorrhages due to gastrointestinal vascular malformations are common. Surgical and endoscopic treatments for haemorrhage due to gastrointestinal vascular malformations are compromised when lesions are diffuse, escape identification or are inaccessible to treatment. Hormonal treatment with oestrogen and progestagens is still controversial based on contradictory results from two randomised clinical trials. Although somatostatin and its long-acting analogue, octreotide, have been reported to be beneficial in preventing rebleeding, there is no consensus on this type of treatment. This case report shows how the combination of ethinyloestradiol and norethisterone markedly reduced the need for blood transfusions with few side effects in one patient; in comparison, octreotide seems less effective but this could be related to a worsening of the disease.
Resumo:
Steroid hormone receptors activate specific gene transcription by binding as hormone-receptor complexes to short DNA enhancer-like elements termed hormone response elements (HREs). We have shown previously that a highly conserved 66 amino acid region of the oestrogen (ER) and glucocorticoid (GR) receptors, which corresponds to part of the receptor DNA binding domain (region C) is responsible for determining the specificity of target gene activation. This region contains two sub-regions (CI and CII) analogous to the 'zinc-fingers' of the transcription factor TFIIIA. We show here that CI and CII appear to be separate domains both involved in DNA binding. Furthermore, using chimaeric ERs in which either the first (N-terminal) (CI) or second (CII) 'zinc finger' region has been exchanged with that of the GR, indicates that it is the first 'zinc finger' which largely determines target gene specificity. We suggest that receptor recognition of the HRE is analogous to that of the helix-turn-helix DNA binding motif in that the receptor binds to DNA as a dimer with the first 'zinc finger' lying in the major groove recognizing one half of the palindromic HRE, and that protein-DNA interaction is stabilized through non-specific DNA binding and dimer interactions contributed by the second 'zinc finger'.
Resumo:
The relationship between oestrogen replacement treatment and the risk of endometrial cancer was analysed in a case-control study of 158 histologically confirmed incident cases below the age of 75 and 468 controls in hospital for acute, non-neoplastic, non-hormone-related conditions conducted in the Swiss Canton of Vaud in 1988-1992. Overall, 60 (38%) cases vs. 93 (20%) controls had ever used oestrogen replacement treatment: the corresponding multiple logistic regression relative risk (RR) was 2.7 (95% confidence interval, CI: 1.7-4.1). The risk was directly related to duration of use, and rose to 5.1 (95% CI: 2.7-9.8) for > 5 year-use. The RR was still significantly elevated 10 or more years after stopping use (RR = 2.3, 95% CI: 1.2-4.5). When the role of covariates was considered, a significant interaction was observed with body mass index (RR for long-term oestrogen use = 6.0 for lean or normal weight women vs. 2.4 for overweight women). There was also a hint of a negative interaction with oral contraceptive (OC) use, since the RR for oestrogens was higher (or restricted) to women who had never used OC (RR = 5.4, for long-term oestrogen use), as compared with those who had used OC, who showed no significant evidence of association with oestrogens (RR = 0.9 for long-term use). There was no significant interaction with cigarette smoking. Thus, this study confirms the presence of a strong association between oestrogen replacement treatment and endometrial cancer risk, since in the late 1980s or early 1990s about 25% of cases could be attributed to oestrogen replacement treatment in this Swiss population. Further, it confirms the presence of significant negative interactions of oestrogen use with obesity, and, possibly, with OC as well.
Resumo:
Over the years, the MCF7 human breast cancer cell line has provided a model system for the study of cellular and molecular mechanisms in oestrogen regulation of cell proliferation and in progression to oestrogen and antioestrogen independent growth. Global gene expression profiling has shown that oestrogen action in MCF7 cells involves the coordinated regulation of hundreds of genes across a wide range of functional groupings and that more genes are down regulated than upregulated. Adaptation to long-term oestrogen deprivation, which results in loss of oestrogen-responsive growth, involves alterations to gene patterns not only at early time points (0-4 weeks) but continuing through to later times (20-55 weeks), and even involves alterations to patterns of oestrogen-regulated gene expression. Only 48% of the genes which were regulated >= 2-fold by oestradiol in oestrogen-responsive cells retained this responsiveness after long-term oestrogen deprivation but other genes developed de novo oestrogen regulation. Long-term exposure to fulvestrant, which resulted in loss of growth inhibition by the antioestrogen, resulted in some very large fold changes in gene expression up to 10,000-fold. Comparison of gene profiles produced by environmental chemicals with oestrogenic properties showed that each ligand gave its own unique expression profile which suggests that environmental oestrogens entering the human breast may give rise to a more complex web of interference in cell function than simply mimicking oestrogen action at inappropriate times. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
The phytoestrogens genistein, daidzein and the daidzein metabolite equol have been shown previously to possess oestrogen agonist activity. However, following consumption of soya diets, they are found in the body not only as aglycones but also as metabolites conjugated at their 4'- and 7-hydroxyl groups with sulphate. This paper describes the effects of monosulphation on the oestrogen agonist properties of these three phytoestrogens in MCF-7 human breast cancer cells in terms of their relative ability to compete with [H-3]oestradiol for binding to oestrogen receptor (ER), to induce a stably transfected oestrogen-responsive reporter gene (ERE-CAT) and to stimulate cell growth. In no case did sulphation abolish activity. The 4'-sulphadon of genistein reduced oestrogen agonist activity to a small extent in whole-cell assays but increased the relative binding affinity to ER. The 7-sulphation of genistein, and also of equol, reduced oestrogen agonist activity substantially in all assays. By contrast, the position of monosulphation of daidzein acted in an opposing manner on oestrogen agonist activity. Sulphation at the 4'-position of daidzein resulted in a modest reduction in oestrogen agonist activity but sulphation of daidzein at the 7-position resulted in an increase in oestrogen agonist activity. Molecular modelling and docking studies suggested that the inverse effects of sulphation could be explained by the binding of daidzein into the ligand-binding domain of the ER in the opposite orientation compared with genistein and equol. This is the first report of sulphation enhancing activity of an isoflavone and inverse effects of sulphation between individual phytoestrogens.
Resumo:
Cell culture models of antioestrogen resistance often involve applying selective pressures of oestrogen deprivation simultaneously with addition of tamoxifen or fulvestrant (Faslodex, ICI 182,780) which makes it difficult to distinguish events in development of antioestrogen resistance from those in loss of response to oestrogen or other components. We describe here time courses of loss of antioestrogen response using either oestrogen-maintained or oestrogen-deprived MCF7 cells in which the only alteration to the culture medium was addition of 10(-6) M tamoxifen or 10(-7) M fulvestrant. In both oestrogen-maintained and oestrogen-deprived models, loss of growth response to tamoxifen was not associated with loss of response to fulvestrant. However, loss of growth response to fulvestrant was associated in both models with concomitant loss of growth response to tamoxifen. Measurement of oestrogen receptor alpha (ER alpha) and oestrogen receptor beta (ER beta) mRNA by real-time RT-PCR together with ER alpha and ER beta protein by Western immunoblotting revealed substantial changes to ER alpha levels but very little alteration to ER beta levels following development of antioestrogen resistance. In oestrogen-maintained cells, tamoxifen resistance was associated with raised levels of ERa mRNA/protein. However by contrast, in oestrogen-deprived MCF7 cells, where oestrogen deprivation alone had already resulted in increased levels of ERa mRNA/protein, long-term tamoxifen exposure now reduced ER alpha levels. Whilst long-term exposure to fulvestrant reduced ERa. mRNA/protein levels in the oestrogen-maintained cells to a level barely detectable by Western immunoblotting and non-functional in inducing gene expression (ERE-LUC reporter or pS2), in oestrogen-deprived cells the reduction was much less substantial and these cells retained an oestrogen-induction of both the ERE-LUC reporter gene and the endogenous pS2 gene which could still be inhibited by antioestrogen. This demonstrates that whilst ER alpha can be abrogated by fulvestrant and increased by tamoxifen in some circumstances, this does not always hold true and mechanisms other than alteration to ER must be involved in the development of antioestrogen resistant growth. (c) 2006 Elsevier Ltd. All rights reserved.
Resumo:
Human breast cancer cells (MCF-7, T-47-D and ZR-75-1) can adapt to circumvent any reduced growth rate during long-term oestrogen deprivation, and this provides three model systems to investigate mechanisms of endocrine resistance in breast cancer. In this paper we report consistent differences in the effects of three growth inhibitors following long-term oestrogen deprivation in all three cell models. Long-term oestrogen deprivation of MCF-7, T-47-D and ZR-75-1 cells resulted in reduced growth inhibition by PD98059 (2–10 µg/ml), implying a loss of dependence on mitogen-activated protein kinase pathways for growth. The growth inhibitor LY294002 (2–10 µM) inhibited growth of both oestrogen-maintained and oestrogen-deprived cells with similar dose–responses, implying continued similar dependence on phosphoinositide 3-kinase (PI3K) pathways with no alteration after adaptation to oestrogen independent growth. However, by contrast, long-term oestrogen deprivation resulted in an increased sensitivity to growth inhibition by rapamycin, which was not reduced by readdition of oestradiol. The enhanced inhibition of long-term oestrogen-deprived MCF-7-ED, T-47-D-ED and ZR-75-1-ED cell growth by combining rapamycin with LY294002 at concentrations where each alone had little effect, offers preclinical support to the development of therapeutic combinations of rapamycin analogues with other PI3K inhibitors in endocrine-resistant breast cancer.
Resumo:
Background: MCF-7, T-47-D, ZR-75-1 human breast cancer cell lines are dependent on oestrogen for growth but can adapt to grow during long-term oestrogen deprivation. This serves as a model for identification of therapeutic targets in endocrine-resistant breast cancer. Methods: An overlooked complication of this model is that it involves more than non-addition of oestrogen, and inadequate attention has been given to separating molecular events associated with each of the culture manipulations. Results: Insulin and oestradiol were shown to protect MCF-7 cells against upregulation of basal growth, demonstrating a crosstalk in the growth adaptation process. Increased phosphorylation of p44/42MAPK and c-Raf reflected removal of insulin from the medium and proliferation of all three cell lines was inhibited to a lesser extent by PD98059 and U0126 following long-term oestrogen/insulin withdrawal, demonstrating a reduced dependence on the MAPK pathway. By contrast, long-term oestrogen/insulin deprivation did not alter levels of phosphorylated Akt and did not alter the dose-response of growth inhibition with LY294002 in any of the three cell lines. The IGF1R inhibitor picropodophyllin inhibited growth of all MCF-7 cells but only in the long-term oestrogen/insulin-deprived cells was this paralleled by reduction in phosphorylated p70S6K, a downstream target of mTOR. Long-term oestrogen/insulin-deprived MCF-7 cells had higher levels of phosphorylated p70S6K and developed increased sensitivity to growth inhibition by rapamycin. Conclusions: The greater sensitivity to growth inhibition by rapamycin in all three cell lines following long-term oestrogen/insulin deprivation suggests rapamycin-based therapies might be more effective in breast cancers with acquired oestrogen resistance. Keywords Akt, breast cancer cells, endocrine resistance, insulin, MAPK, MCF-7 cells, mTOR, oestrogen, oestrogen-deprived, PI3K, picropodophyllin, rapamycin, T-47-D cells, ZR-75-1 cells
Resumo:
Growth responses to oestrogen can be reproducibly obtained using a selection of oestrogen-receptor-containing human breast cancer cell lines, and molecular mechanisms have been shown to include modulation to growth factor/receptor/signalling pathways, cell-cycle proteins, apoptosis, differentiation, adhesion, motility and migration. Considerable progress has been made in understanding the molecular basis of oestrogen action on gene expression through the ligand-activated transcription factors human oestrogen receptor α (ERα) and ERβ and the resulting effects on global gene expression patterns, but the full profile of coordination of the alterations, which brings about changes in cell growth through genomic and non-genomic mechanisms remain to be fully elucidated. Oestrogen regulation of cell growth involves a complex cross-talk between oestrogen receptor and growth factor signalling pathways such that inhibition of one pathway may lead to stimulation of another, which may explain the remarkable ability of human breast cancer cells to escape from any mode of imposed growth inhibition be it oestrogen deprivation or administration of antioestrogen. Although studies on cell growth have focused to date on the effects of physiological oestrogens, many hundreds of environmental chemicals with oestrogenic properties have now been measured in the human breast. Whether or not the weight of evidence eventually establishes any causal link of complex mixtures of environmental oestrogenic chemicals with breast cancer, the presence of so many oestrogenic chemicals in the breast must influence resulting oestrogenic responses, and the impact of this additional oestrogenic burden needs to be taken into account in future studies on growth regulation of human breast cancer cells.