937 resultados para odontogenesis drugs effects
Resumo:
The frequency of dental abnormalities, such as delayed dental development, microdontia, hypoplasia, agenesis, V-shaped root and shortened root was evaluated in 76 acute lymphoblastic leukemia (ALL) pediatric patients who had been off chemotherapy for 6 months. These children had been subjected to one of the three Brazilian Protocols or the BFM86 Protocol. The patients were divided into three groups: Group I (GI; high risk) treated with one of the three Brazilian Protocols who received high-dose chemotherapy, intensive maintenance and cranial radiotherapy; Group II (GII; low risk) who were also treated with one of the three Brazilian Protocols using low-intensive chemotherapy with no radiotherapy; and Group III (GIII) based on the BFM86 Protocol.Of 76 children, 13 showed no dental abnormalities (8 were at the age of tooth formation). The remaining 63 children (82.9%) showed at least one dental anomaly.The abnormalities were probably caused by the type, intensity, frequency of the treatment and age of the patients at ALL diagnosis and this might have important consequences for the children's dental development. (C) 2002 Elsevier B.V. Ltd. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Organic anion-transporting polypeptide 1B1 (OATP1B1), encoded by the SLCO1B1 gene, is an influx transporter expressed on the sinusoidal membrane of human hepatocytes. The common c.521T>C (p.Val174Ala) single-nucleotide polymorphism (SNP) of the SLCO1B1 gene has been associated with reduced OATP1B1 transport activity in vitro and increased plasma concentrations of several of its substrate drugs in vivo in humans. Another common SNP of the SLCO1B1 gene, c.388A>G (p.Asn130Asp), defining the SLCO1B1*1B (c.388G-c.521T) haplotype, has been associated with increased OATP1B1 transport activity in vitro. The aim of this thesis was to investigate the role of SLCO1B1 polymorphism in the pharmacokinetics of the oral antidiabetic drugs repaglinide, nateglinide, rosiglitazone, and pioglitazone. Furthermore, the effect of the SLCO1B1 c.521T>C SNP on the extent of interaction between gemfibrozil and repaglinide as well as the role of the SLCO1B1 c.521T>C SNP in the potential interaction between atorvastatin and repaglinide were evaluated. Five crossover studies with 2-4 phases were carried out, with 20-32 healthy volunteers in each study. The effects of the SLCO1B1 c.521T>C SNP on single doses of repaglinide, nateglinide, rosiglitazone, and pioglitazone were investigated in Studies I and V. In Study II, the effects of the c.521T>C SNP on repaglinide pharmacokinetics were investigated in a dose-escalation study, with repaglinide doses ranging from 0.25 to 2 mg. The effects of the SLCO1B1*1B/*1B genotype on repaglinide and nateglinide pharmacokinetics were investigated in Study III. In Study IV, the interactions of gemfibrozil and atorvastatin with repaglinide were evaluated in relation to the c.521T>C SNP. Plasma samples were collected for drug concentration determinations. The pharmacodynamics of repaglinide and nateglinide was assessed by measuring blood glucose concentrations. The mean area under the plasma repaglinide concentration-time curve (AUC) was ~70% larger in SLCO1B1 c.521CC participants than in c.521TT participants (P ≤ 0.001), but no differences existed in the pharmacokinetics of nateglinide, rosiglitazone, and pioglitazone between the two genotype groups. In the dose-escalation study, the AUC of repaglinide was 60-110% (P ≤ 0.001) larger in c.521CC participants than in c.521TT participants after different repaglinide doses. Moreover, the AUC of repaglinide increased linearly with repaglinide dose in both genotype groups (r > 0.88, P 0.001). The AUC of repaglinide was ~30% lower in SLCO1B1*1B/*1B participants than in SLCO1B1*1A/*1A (c.388AA-c.521TT) participants (P = 0.007), but no differences existed in the AUC of nateglinide between the two genotype groups. In the drug-drug interaction study, the mean increase in the repaglinide AUC by gemfibrozil was ~50% (P = 0.002) larger in c.521CC participants than in c.521TT participants, but the relative (7-8-fold) increases in the repaglinide AUC did not differ significantly between the genotype groups. In c.521TT participants, atorvastatin increased repaglinide peak plasma concentration and AUC by ~40% (P = 0.001) and ~20% (P = 0.033), respectively. In each study, after repaglinide administration, there was a tendency towards lower blood glucose concentrations in c.521CC participants than in c.521TT participants. In conclusion, the SLCO1B1 c.521CC genotype is associated with increased and the SLCO1B1*1B/*1B genotype with decreased plasma concentrations of repaglinide, consistent with reduced and enhanced hepatic uptake, respectively. Inhibition of OATP1B1 plays a limited role in the interaction between gemfibrozil and repaglinide. Atorvastatin slightly raises plasma repaglinide concentrations, probably by inhibiting OATP1B1. The findings on the effect of SLCO1B1 polymorphism on the pharmacokinetics of the drugs studied suggest that in vivo in humans OATP1B1 significantly contributes to the hepatic uptake of repaglinide, but not to that of nateglinide, rosiglitazone, or pioglitazone. SLCO1B1 polymorphism may be associated with clinically significant differences in blood glucose-lowering response to repaglinide, but probably has no effect on the response to nateglinide, rosiglitazone, or pioglitazone.
Resumo:
The blood-brain barrier (BBB) is a unique barrier that strictly regulates the entry of endogenous substrates and xenobiotics into the brain. This is due to its tight junctions and the array of transporters and metabolic enzymes that are expressed. The determination of brain concentrations in vivo is difficult, laborious and expensive which means that there is interest in developing predictive tools of brain distribution. Predicting brain concentrations is important even in early drug development to ensure efficacy of central nervous system (CNS) targeted drugs and safety of non-CNS drugs. The literature review covers the most common current in vitro, in vivo and in silico methods of studying transport into the brain, concentrating on transporter effects. The consequences of efflux mediated by p-glycoprotein, the most widely characterized transporter expressed at the BBB, is also discussed. The aim of the experimental study was to build a pharmacokinetic (PK) model to describe p-glycoprotein substrate drug concentrations in the brain using commonly measured in vivo parameters of brain distribution. The possibility of replacing in vivo parameter values with their in vitro counterparts was also studied. All data for the study was taken from the literature. A simple 2-compartment PK model was built using the Stella™ software. Brain concentrations of morphine, loperamide and quinidine were simulated and compared with published studies. Correlation of in vitro measured efflux ratio (ER) from different studies was evaluated in addition to studying correlation between in vitro and in vivo measured ER. A Stella™ model was also constructed to simulate an in vitro transcellular monolayer experiment, to study the sensitivity of measured ER to changes in passive permeability and Michaelis-Menten kinetic parameter values. Interspecies differences in rats and mice were investigated with regards to brain permeability and drug binding in brain tissue. Although the PK brain model was able to capture the concentration-time profiles for all 3 compounds in both brain and plasma and performed fairly well for morphine, for quinidine it underestimated and for loperamide it overestimated brain concentrations. Because the ratio of concentrations in brain and blood is dependent on the ER, it is suggested that the variable values cited for this parameter and its inaccuracy could be one explanation for the failure of predictions. Validation of the model with more compounds is needed to draw further conclusions. In vitro ER showed variable correlation between studies, indicating variability due to experimental factors such as test concentration, but overall differences were small. Good correlation between in vitro and in vivo ER at low concentrations supports the possibility of using of in vitro ER in the PK model. The in vitro simulation illustrated that in the simulation setting, efflux is significant only with low passive permeability, which highlights the fact that the cell model used to measure ER must have low enough paracellular permeability to correctly mimic the in vivo situation.
Resumo:
Dipeptidyl peptidase IV (DPP IV) is the primary inactivator of glucoregulatory incretin hormones. This has lead to development of DPP IV inhibitors as a new class of agents for the treatment of type 2 diabetes. Recent reports indicate that other antidiabetic drugs, such as metformin, may also have inhibitory effects on DPP IV activity. In this investigation we show that high concentrations of several antidiabetic drug classes, namely thiazolidinediones, sulphonylureas, meglitinides and morphilinoguanides can inhibit DPP IV The strongest inhibitor nateglinide, the insulin-releasing meglitinide was effective at low therapeutically relevant concentrations as low as 25 mu mol/l. Nateglinide also prevented the degradation of glucagon-like peptide-1 (GLP-1) by DPP IV in a time and concentration-dependent manner. In vitro nateglinide and GLP-1 effects on insulin release were additive. In vivo nateglinide improved the glucose-lowering and insulin-releasing activity of GLP-1 in obese-diabetic ob/ob mice. This was accompanied by significantly enhanced circulating concentrations of active GLP-1(7-36)amide and lower levels of DPP IV activity. Nateglinide similarly benefited the glucose and insulin responses to feeding in ob/ob mice and such actions were abolished by coadministration of exendin(9-39) and (Pro(3))GIP to block incretin hormone action. These data indicate that the use of nateglinide as a prandial insulin-releasing agent may partly rely on inhibition of GLP-1 degradation as well as beta-cell K-ATP channel inhibition. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
The aim of this paper is to use Markov modelling to
investigate survival for particular types of kidney patients
in relation to their exposure to anti-hypertensive treatment
drugs. In order to monitor kidney function an intuitive three
point assessment is proposed through the collection of blood
samples in relation to Chronic Kidney Disease for Northern
Ireland patients. A five state Markov Model was devised
using specific transition probabilities for males and
females over all age groups. These transition probabilities
were then adjusted appropriately using relative risk scores
for the event death for different subgroups of patients. The
model was built using TreeAge software package in order to
explore the effects of anti-hypertensive drugs on patients.
Resumo:
O osso é um tecido metabolicamente ativo e a sua remodelação é importante para regular e manter a massa óssea. Esse processo envolve a reabsorção do material ósseo por ação dos osteoclastos e a síntese de novo material ósseo mediado pelos osteoblastos. Vários estudos têm sugerido que a pressão arterial elevada está associada a alterações no metabolismo do cálcio, o que leva ao aumento da perda de cálcio e da remoção de cálcio do osso. Embora as alterações no metabolismo ósseo sejam um efeito adverso associado a alguns fármacos antihipertensores, o conhecimento em relação a este efeito terapêutico ligado com os bloqueadores de canais de cálcio é ainda muito escasso. Uma vez que os possíveis efeitos no osso podem ser atribuídos à ação antihipertensiva dessas moléculas, ou através de um efeito direto nas atividades metabólicas ósseas, torna-se necessário esclarecer este assunto. Devido ao facto de que as alterações no metabolismo ósseo são um efeito adverso associado a alguns fármacos antihipertensores, o objetivo deste trabalho é avaliar o efeito que os bloqueadores dos canais de cálcio exercem sobre as células ósseas humanas, nomeadamente osteoclastos, osteoblastos e co-culturas de ambos os tipos celulares. Verificou-se que os efeitos dos fármacos antihipertensores variaram consoante o fármaco testado e o sistema de cultura usado. Alguns fármacos revelaram a capacidade de estimular a osteoclastogénese e a osteoblastogénese em concentrações baixas. Independentemente da identidade do fármaco, concentrações elevadas revelaram ser prejudiciais para a resposta das células ósseas. Os mecanismos intracelulares através dos quais os efeitos foram exercidos foram igualmente afetados de forma diferencial pelos diferentes fármacos. Em resumo, este trabalho demonstrou que os bloqueadores dos canais de cálcio utilizados possuem a capacidade de afetar direta- e indiretamente a resposta de células ósseas humanas, cultivadas isoladamente ou co-cultivadas. Este tipo de informação é crucial para compreender e prevenir os potenciais efeitos destes fármacos no tecido ósseo, e também para adequar e eventualmente melhorar a terapêutica antihipertensora de cada paciente.
Resumo:
Bone is constantly being molded and shaped by the action of osteoclasts and osteoblasts. A proper equilibrium between both cell types metabolic activities is required to ensure an adequate skeletal tissue structure, and it involves resorption of old bone and formation of new bone tissue. It is reported that treatment with antiepileptic drugs (AEDs) can elicit alterations in skeletal structure, in particular in bone mineral density. Nevertheless, the knowledge regarding the effects of AEDs on bone cells are still scarce. In this context, the aim of this study was to investigate the effects of five different AEDs on human osteoclastic, osteoblastic and co-cultured cells. Osteoclastic cell cultures were established from precursor cells isolated from human peripheral blood and were characterized for tartrate-resistant acid phosphatase (TRAP) activity, number of TRAP+ multinucleated cells, presence of cells with actin rings and expressing vitronectin and calcitonin receptors and apoptosis rate. Also, the involvement of several signaling pathways on the cellular response was addressed. Osteoblastic cell cultures were obtained from femur heads of patients (25-45 years old) undergoing orthopaedic surgery procedures and were then studied for cellular proliferation/viability, ALP activity, histochemical staining of ALP and apoptosis rate. Also the expression of osteoblast-related genes and the involvement of some osteoblastogenesis-related signalling pathways on cellular response were addressed. For co-cultured cells, osteoblastic cells were firstly seeded and cultured. After that, PBMC were added to the osteoblastic cells and co-cultures were evaluated using the same osteoclast and osteoblast parameters mentioned above for the corresponding isolated cell. Cell-cultures were maintained in the absence (control) or in the presence of different AEDs (carbamazepine, gabapentin, lamotrigine, topiramate and valproic acid). All the tested drugs were able to affect osteoclastic and osteoblastic cells development, although with different profiles on their osteoclastogenic and osteoblastogenic modulation properties. Globally, the tendency was to inhibit the process. Furthermore, the signaling pathways involved in the process also seemed to be differently affected by the AEDs, suggesting that the different drugs may affect osteoclastogenesis and/or osteoblastogenesis through different mechanisms. In conclusion, the present study showed that the different AEDs had the ability to directly and indirectly modulate bone cells differentiation, shedding new light towards a better understanding of how these drugs can affect bone tissue.