958 resultados para ocean waves and oscillations
Resumo:
A new nonlinear integral transform of ocean wave spectra into Along-Track Interferometric Synthetic Aperture Radar (ATI-SAR) image spectra is described. ATI-SAR phase image spectra are calculated for various sea states and radar configurations based on the nonlinear integral transform. The numerical simulations show that the slant range to velocity ratio (R/V), significant wave height to ocean wavelength ratio (H-s/lambda), the baseline (2B) and incident angle (theta) affect ATI-SAR imaging. The ATI-SAR imaging theory is validated by means of Two X-band, HH-polarized ATI-SAR phase images of ocean waves and eight C-band, HH-polarized ATI-SAR phase image spectra of ocean waves. It is shown that ATI-SAR phase image spectra are in agreement with those calculated by forward mapping in situ directional wave spectra collected simultaneously with available ATI-SAR observations. ATI-SAR spectral correlation coefficients between observed and simulated are greater than 0.6 and are not sensitive to the degree of nonlinearity. However, the ATI-SAR phase image spectral turns towards the range direction, even if the real ocean wave direction is 30 degrees. It is also shown that the ATI-SAR imaging mechanism is significantly affected by the degree of velocity bunching nonlinearity, especially for high values of R/V and H-s/lambda.
Resumo:
We develop a novel remote sensing technique for the observation of waves on the ocean surface. Our method infers the 3-D waveform and radiance of oceanic sea states via a variational stereo imagery formulation. In this setting, the shape and radiance of the wave surface are given by minimizers of a composite energy functional that combines a photometric matching term along with regularization terms involving the smoothness of the unknowns. The desired ocean surface shape and radiance are the solution of a system of coupled partial differential equations derived from the optimality conditions of the energy functional. The proposed method is naturally extended to study the spatiotemporal dynamics of ocean waves and applied to three sets of stereo video data. Statistical and spectral analysis are carried out. Our results provide evidence that the observed omnidirectional wavenumber spectrum S(k) decays as k-2.5 is in agreement with Zakharov's theory (1999). Furthermore, the 3-D spectrum of the reconstructed wave surface is exploited to estimate wave dispersion and currents.
Resumo:
Planetary waves are key to large-scale dynamical adjustment in the global ocean as they transfer energy from the east to the west side of oceanic basins; they connect the forcing in the ocean interior with the variability at its boundaries: and they change the local heat content, thus coupling oceanic, atmospheric, and biological processes. Planetary waves, mostly of the first baroclinic mode, are observed as distinctive patterns in global time series of sea surface height anomaly (SSHA) and heat storage. The goal of this study is to compare and validate large-scale SSHA signals from coupled ocean-atmosphere general circulation Model for Interdisciplinary Research on Climate (MIROC) with TOPEX/POSEIDON satellite altimeter observations. The last decade of the models` time series is selected for comparison with the altimeter data. The wave patterns are separated from the meso- and large-scale SSHA signals by digital filters calibrated to select the same spectral bands in both model and altimeter data. The band-wise comparison allows for an assessment of the model skill to simulate the dynamical components of the observed wave field. Comparisons regarding both the seasonal cycle and the Rossby wave Held differ significantly among basins. When carried within the same basin, differences can occur between equal latitudes in opposite hemispheres. Furthermore, at some latitudes the MIROC reproduces biannual, annual and semiannual planetary waves with phase speeds and average amplitudes similar to those observed by the altimeter, but with significant differences in phase. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
An ocean general circulation model (OGCM) is used to study the roles of equatorial waves and western boundary reflection in the seasonal circulation of the equatorial Indian Ocean. The western boundary reflection is defined as the total Kelvin waves leaving the western boundary, which include the reflection of the equatorial Rossby waves as well as the effects of alongshore winds, off-equatorial Rossby waves, and nonlinear processes near the western boundary. The evaluation of the reflection is based on a wave decomposition of the OGCM results and experiments with linear models. It is found that the alongshore winds along the east coast of Africa and the Rossby waves in the off-equatorial areas contribute significantly to the annual harmonics of the equatorial Kelvin waves at the western boundary. The semiannual harmonics of the Kelvin waves, on the other hand, originate primarily from a linear reflection of the equatorial Rossby waves. The dynamics of a dominant annual oscillation of sea level coexisting with the dominant semiannual oscillations of surface zonal currents in the central equatorial Indian Ocean are investigated. These sea level and zonal current patterns are found to be closely related to the linear reflections of the semiannual harmonics at the meridional boundaries. Because of the reflections, the second baroclinic mode resonates with the semiannual wind forcing; that is, the semiannual zonal currents carried by the reflected waves enhance the wind-forced currents at the central basin. Because of the different behavior of the zonal current and sea level during the reflections, the semiannual sea levels of the directly forced and reflected waves cancel each other significantly at the central basin. In the meantime, the annual harmonic of the sea level remains large, producing a dominant annual oscillation of sea level in the central equatorial Indian Ocean. The linear reflection causes the semiannual harmonics of the incoming and reflected sea levels to enhance each other at the meridional boundaries. In addition, the weak annual harmonics of sea level in the western basin, resulting from a combined effect of the western boundary reflection and the equatorial zonal wind forcing, facilitate the dominance by the semiannual harmonics near the western boundary despite the strong local wind forcing at the annual period. The Rossby waves are found to have a much larger contribution to the observed equatorial semiannual oscillations of surface zonal currents than the Kelvin waves. The westward progressive reversal of seasonal surface zonal currents along the equator in the observations is primarily due to the Rossby wave propagation.
Resumo:
Two mechanisms for the wave-induced pore pressures in a porous seabed, i.e. oscillatory and residual excess pore pressures, have been observed in laboratory experiments and field measurements. Most previous investigations have focused on one of the mechanisms individually. In this paper, an analytical solution for the wave-induced residual pore pressure, which is not available yet, is derived, and compared with the existing experimental data. With the new solution, a parametric analysis is performed to clarify the applicable ranges of two mechanisms. Then, a simplified approximation for the prediction of wave-induced liquefaction potential is proposed for engineering practice.
Resumo:
This work presents analyses of the atmospheric conditions and the hindcast of the surface wave field when six extratropical cyclones formed and displaced over the South Atlantic Ocean (10degreesN, 60degreesS; 75degreesW, 15degreesE) between April and September 1999. These events caused high sea waves associated with hazardous conditions along the south and southeast coast of Brazil. The meteorological composite fields for these cyclones show a strong near-surface wind velocity (up to 14 m s(-1)) during its mature phase. The sea-state wave hindcast was obtained using a third-generation wave model forced by the 10-m above ground level wind field from the National Centers for Environmental Prediction-National Center for Atmospheric Research reanalysis dataset. Closer to the south and southeast Brazilian coast, the hindcast results showed significant wave heights of up to 5 m in some of the events. The wave hindcast results for the significant wave height were compared against satellite altimeter data at 6 h intervals. The statistical index showed a systematic underestimation of the significant wave height by 0.5 m. The correlation between wave hindcast and altimeter measurements was greater than 90%, showing a good phase reproduction by the wave model.
Resumo:
Mode of access: Internet.
Resumo:
"November 1975."
Resumo:
We investigate the impact of the Indian Ocean Dipole (IOD) and El Nino and the Southern Oscillation (ENSO) on sea level variations in the North Indian Ocean during 1957-2008. Using tide-gauge and altimeter data, we show that IOD and ENSO leave characteristic signatures in the sea level anomalies (SLAs) in the Bay of Bengal. During a positive IOD event, negative SLAs are observed during April-December, with the SLAs decreasing continuously to a peak during September-November. During El Nino, negative SLAs are observed twice (April-December and November-July), with a relaxation between the two peaks. SLA signatures during negative IOD and La Nina events are much weaker. We use a linear, continuously stratified model of the Indian Ocean to simulate their sea level patterns of IOD and ENSO events. We then separate solutions into parts that correspond to specific processes: coastal alongshore winds, remote forcing from the equator via reflected Rossby waves, and direct forcing by interior winds within the bay. During pure IOD events, the SLAs are forced both from the equator and by direct wind forcing. During ENSO events, they are primarily equatorially forced, with only a minor contribution from direct wind forcing. Using a lead/lag covariance analysis between the Nino-3.4 SST index and Indian Ocean wind stress, we derive a composite wind field for a typical El Nino event: the resulting solution has two negative SLA peaks. The IOD and ENSO signatures are not evident off the west coast of India.
Resumo:
Synfire waves are propagating spike packets in synfire chains, which are feedforward chains embedded in random networks. Although synfire waves have proved to be effective quantification for network activity with clear relations to network structure, their utilities are largely limited to feedforward networks with low background activity. To overcome these shortcomings, we describe a novel generalisation of synfire waves, and define `synconset wave' as a cascade of first spikes within a synchronisation event. Synconset waves would occur in `synconset chains', which are feedforward chains embedded in possibly heavily recurrent networks with heavy background activity. We probed the utility of synconset waves using simulation of single compartment neuron network models with biophysically realistic conductances, and demonstrated that the spread of synconset waves directly follows from the network connectivity matrix and is modulated by top-down inputs and the resultant oscillations. Such synconset profiles lend intuitive insights into network organisation in terms of connection probabilities between various network regions rather than an adjacency matrix. To test this intuition, we develop a Bayesian likelihood function that quantifies the probability that an observed synfire wave was caused by a given network. Further, we demonstrate it's utility in the inverse problem of identifying the network that caused a given synfire wave. This method was effective even in highly subsampled networks where only a small subset of neurons were accessible, thus showing it's utility in experimental estimation of connectomes in real neuronal-networks. Together, we propose synconset chains/waves as an effective framework for understanding the impact of network structure on function, and as a step towards developing physiology-driven network identification methods. Finally, as synconset chains extend the utilities of synfire chains to arbitrary networks, we suggest utilities of our framework to several aspects of network physiology including cell assemblies, population codes, and oscillatory synchrony.
Resumo:
A new wave retrieval method for the Along-Track Interferometric Synthetic Aperture Radar (AT-InSAR) phase image is presented. The new algorithm, named parametric retrieval algorithm (PRA), uses the full nonlinear mapping relations. It differs from previous retrieval algorithms in that it does not require a priori information about the sea state or the wind vector from scatterometer data. Instead, it combines the observed AT-InSAR phase spectrum and assumed wind vector to estimate the wind sea spectrum. The method has been validated using several C-band and X-band HH-polarized AT-InSAR observations collocated with spectral buoy measurements. In this paper, X-band and C-band HH-polarized AT-InSAR phase images of ocean waves are first used to study AT-InSAR wave imaging fidelity. The resulting phase spectra are quantitatively compared with forward-mapped in situ directional wave spectra collocated with the AT-InSAR observations. Subsequently, we combine the parametric retrieval algorithm (PRA) with X-band and C-band HH-polarized AT-InSAR phase images to retrieve ocean wave spectra. The results show that the ocean wavelengths, wave directions, and significant wave heights estimated from the retrieved ocean wave spectra are in agreement with the buoy measurements.
Resumo:
Based on the second-order random wave solutions of water wave equations in finite water depth, statistical distributions of the depth- integrated local horizontal momentum components are derived by use of the characteristic function expansion method. The parameters involved in the distributions can be all determined by the water depth and the wave-number spectrum of ocean waves. As an illustrative example, a fully developed wind-generated sea is considered and the parameters are calculated for typical wind speeds and water depths by means of the Donelan and Pierson spectrum. The effects of nonlinearity and water depth on the distributions are also investigated.
Resumo:
Based on the second-order random wave solutions of water wave equations in finite water depth, a statistical distribution of the wave-surface elevation is derived by using the characteristic function expansion method. It is found that the distribution, after normalization of the wave-surface elevation, depends only on two parameters. One parameter describes the small mean bias of the surface produced by the second-order wave-wave interactions. Another one is approximately proportional to the skewness of the distribution. Both of these two parameters can be determined by the water depth and the wave-number spectrum of ocean waves. As an illustrative example, we consider a fully developed wind-generated sea and the parameters are calculated for various wind speeds and water depths by using Donelan and Pierson spectrum. It is also found that, for deep water, the dimensionless distribution reduces to the third-order Gram-Charlier series obtained by Longuet-Higgins [J. Fluid Mech. 17 (1963) 459]. The newly proposed distribution is compared with the data of Bitner [Appl. Ocean Res. 2 (1980) 63], Gaussian distribution and the fourth-order Gram-Charlier series, and found our distribution gives a more reasonable fit to the data. (C) 2002 Elsevier Science B.V. All rights reserved.