9 resultados para occultations


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Stellar occultations are the most accurate Earth-based astronomy technique to obtain the lateral position of celestial bodies, in the case of natural satellites, their accuracy also depends on the central body to which the satellite orbits. The main goal of this thesis work is to analyze if and how very long baseline interferometry (VLBI) measurements of a body like Jupiter can be used in support to stellar occultations of its natural satellites by reducing the planetary uncertainty at the time of the occultation. In particular, we analyzed the events of the stellar occultations of Callisto (15.01.2024) and Io (02.04.2021). The stellar occultation of Callisto has been predicted and simulated using the stellar occultation reduction analysis (SORA) toolkit while the stellar occultation of Io has been already studied by Morgado et al. We then simulated the VLBI data of Jupiter according to the current JUNO trajectories. The required observation were then used as input of an estimation to which then we performed a covariance analysis on the estimated parameters to retrieve the formal errors (1 − σ uncertainties) at each epoch of the propagation. The results show that the addition of the VLBI slightly improves the uncertainty of Callisto even when Jupiter knowledge is worse while for Io we observed that the VLBI data is especially crucial in the scenario of an a priori uncertainty in Jupiter state of about 10km. Here we can have improvements of the estimated initial states of Io of about 70m, 230m and 900m to the radial, along-track and cross-track directions respectively. Moreover, we have also obtained the propagated errors of the two moons in terms of right ascension and declination which both show uncertainties in the mas level at the occultation time. Finally, we simulated Io and Europa together and we observed that at the time of the stellar occultation of Europa the along-track component of Io is constrained, confirming the coupling between the two inner moons.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Réalisé en cotutelle avec le laboratoire M2S de Rennes 2

Relevância:

10.00% 10.00%

Publicador:

Resumo:

L’action humaine dans une séquence vidéo peut être considérée comme un volume spatio- temporel induit par la concaténation de silhouettes dans le temps. Nous présentons une approche spatio-temporelle pour la reconnaissance d’actions humaines qui exploite des caractéristiques globales générées par la technique de réduction de dimensionnalité MDS et un découpage en sous-blocs afin de modéliser la dynamique des actions. L’objectif est de fournir une méthode à la fois simple, peu dispendieuse et robuste permettant la reconnaissance d’actions simples. Le procédé est rapide, ne nécessite aucun alignement de vidéo, et est applicable à de nombreux scénarios. En outre, nous démontrons la robustesse de notre méthode face aux occultations partielles, aux déformations de formes, aux changements d’échelle et d’angles de vue, aux irrégularités dans l’exécution d’une action, et à une faible résolution.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Since the Voyager flybys, embedded moonlets have been proposed to explain some of the surprising structures observed in Saturn's narrow F ring. Experiments conducted with the Cassini spacecraft support this suggestion. Images of the F ring show bright compact spots, and seven occultations of stars by the F ring, monitored by ultraviolet and infrared experiments, revealed nine events of high optical depth. These results point to a large number of such objects, but it is not clear whether they are solid moonlets or rather loose particle aggregates. Subsequent images suggested an irregular motion of these objects so that a determination of their orbits consistent with the F ring failed. Some of these features seem to cross the whole ring. Here we show that these observations are explained by chaos in the F ring driven mainly by the 'shepherd' moons Prometheus and Pandora. It is characterized by a rather short Lyapunov time of about a few hundred orbital periods. Despite this chaotic diffusion, more than 93 per cent of the F-ring bodies remain confined within the F ring because of the shepherding, but also because of a weak radial mobility contrasted by an effective longitudinal diffusion. This chaotic stirring of all bodies involved prevents the formation of 'propellers' typical of moonlets, but their frequent ring crossings explain the multiple radial 'streaks' seen in the F ring. The related 'thermal' motion causes more frequent collisions between all bodies which steadily replenish F-ring dust and allow for ongoing fragmentation and re-accretion processes (ring recycling).