979 resultados para obstacle crossing


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background and Purpose. Obstacle crossing is compromised following stroke. The purpose of this study was to quantify modifications during obstacle clearance following stroke.

Subjects. Twelve subjects with stroke and 12 subjects without stroke participated in the study.

Methods. Kinematic variables were measured while participants crossed a 4-cm-high obstacle. Subjects with stroke walked at a self-selected speed; subjects without stroke walked at a comparable speed and at a self-selected speed.

Results. Several modifications were observed following stroke with both groups walking at self-selected speeds. The affected lead limb was positioned closer to the obstacle before crossing. Affected trail-limb clearance over the obstacle was reduced. Both affected and unaffected lead and trail limbs landed closer to the obstacle after clearance. Swing time was increased in the affected lead limb after obstacle clearance. Fewer modifications were detected at matched walking speed; the trail limb still landed closer to the obstacle.

Discussion and Conclusion. Modifications during obstacle crossing following stroke may be partly related to walking speed. The findings raise issues of safety because people with stroke demonstrated reduced clearance of a 4-cm obstacle and limb placement closer to the obstacle after clearance.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Human motion seems to be guided by some optimal principles. In general, it is assumed that human walking is generated with minimal energy consumption. However, in the presence of disturbances during gait, there is a trade-off between stability (avoiding a fall) and energy-consumption. This work analyses the obstacle-crossing with the leading foot. It was hypothesized that energy-saving mechanisms during obstacle-crossing are modulated by the requirement to avoid a fall using the available sensory information, particularly, by vision. A total of fourteen subjects, seven with no visual impairment and seven blind, walked along a 5 meter flat pathway with an obstacle of 0.26 m height located at 3 m from the starting point. The seven subjects with normal vision crossed the obstacle successfully 30 times in two conditions: blindfolded and with normal vision. The seven blind subjects did the same 30 times. The motion of the leading limb was recorded by video at 60 Hz. There were markers placed on the subject's hip, knee, ankle, rear foot, and forefoot. The motion data were filtered with a fourth order Butterworth filter with a cut-off frequency of 4 Hz. The following variables were calculated: horizontal distance between the leading foot and the obstacle at toe-off prior to (DHPO) and after (DHOP) crossing, minimal vertical height from the foot to the obstacle (DVPO), average step velocity (VELOm). The segmental energies were also calculated and the work consumed by the leading limb during the crossing obstacle was computed for each trial. A statistical analysis repeated-measures ANOVA was conducted on these dependent variables revealing significant differences between the vision and non-vision conditions in healthy subjects. In addition, there were no significant differences between the blind and people with vision blindfolded. These results indicate that vision is crucial to determine the optimal trade-off between energy consumption and avoiding a trip during obstacle crossing.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The purpose of the current study was to investigate the role of visual information on gait control in people with Parkinson's disease as they crossed over obstacles. Twelve healthy individuals, and 12 patients with mild to moderate Parkinson's disease, walked at their preferred speeds along a walkway and stepped over obstacles of varying heights (ankle height or half-knee height), under three visual sampling conditions: dynamic (normal lighting), static (static visual samples, similar to stroboscopic lighting), and voluntary visual sampling. Subjects wore liquid crystal glasses for visual manipulation. In the static visual sampling condition only, the patients with Parkinson's disease made contact with the obstacle more often than did the control subjects. In the successful trials, the patients increased their crossing step width in the static visual sampling condition as compared to the dynamic and voluntary visual sampling conditions; the control group maintained the same step width for all visual sampling conditions. The patients showed lower horizontal mean velocity values during obstacle crossing than did the controls. The patients with Parkinson's disease were more dependent on optic flow information for successful task and postural stability than were the control subjects. Bradykinesia influenced obstacle crossing in the patients with Parkinson's disease. © 2013 Elsevier B.V.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The aim of this study was to investigate obstacle clearance and its variability in individuals with Alzheimer dementia (AD) as well as healthy elderly individuals while they approached and crossed an obstacle in their path. Fifteen people with AD and 15 age-matched/sex-matched healthy individuals (control group) participated in this study. Clinical assessment of both groups was performed by a neuropsychiatrist. Spatial-temporal parameters of 5 trials of unobstructed walking and 5 trials of obstacle crossing during walking (approach and crossing phases) were measured using a 3-dimensional optoelectronic system. The results indicated that individuals with AD showed higher variability in the approach phase for stride length and the horizontal distance from their trailing limb foot to the obstacle. However, their gait variability in the crossing phase was similar to the control group. In addition, the individuals with AD were found to walk slowly and with a short stride length in both conditions. In conclusion, individuals with AD had increased gait variability while approaching an obstacle during walking, indicating a deficit in planning to avoid obstacles that could be related to cognitive disorders. However, gait variability during the crossing phase may not be indicative of cognitive disorders in AD.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Community locomotion is threatened when older individuals are required to negotiate obstacles, which place considerable stress on the musculoskeletal system. The vulnerability of older adults during challenging locomotor tasks is further compromised by age-related strength decline and muscle atrophy. The first study in this investigation determined the relationship between the major muscle groups of the lower body and challenging locomotor tasks commonly found in the community environment of older adults. Twenty-nine females and sixteen males aged between 62 and 88 years old (68.2 ±6.5) were tested for the maximal voluntary contraction (MVC) strength of the knee extensors and 1-RM for the hip extensors, flexors, adductors, abductors, knee extensors and flexors and ankle plantar flexors. Temporal measurements of an obstacle course comprising four gait tasks set at three challenging levels were taken. The relationship between strength and the obstacle course dependent measures was explored using linear regression models. Significant associations (p≤0.05) between all the strength measures and the gait performances were found. The correlation values between strength and obstructed gait (r = 0.356-0.554) and the percentage of the variance explained by strength (R2 = 13%-31%), increased as a function of the challenging levels, especially for the stepping over and on and off conditions. While the difficulty of community older adults to negotiate obstacles cannot be attributed to a single causal pathway, the findings of the first study showed that strength is a critical requirement. That the magnitude of the association increased as a function of the challenging levels, suggests that interventions aimed at improving strength would potentially be effective in helping community older adults to negotiate environmental gait challenges. In view of the findings of the first study, a second investigation determined the effectiveness of a progressive resistance-training program on obstructed gait tasks measured under specific laboratory conditions and on an obstacle course mimicking a number of environmental challenges. The time courses of strength gains and neuromuscular mechanisms underpinning the exercise-induced strength improvements in community-dwelling older adults were also investigated. The obstructed gait conditions included stepping over an obstacle, on and off a raised surface, across an obstacle and foot targeting. Forty-three community-living adults with a mean age of 68 years (control =14 and experimental=29) completed a 24-week progressive resistance training program designed to improve strength and induce hypertrophy in the major muscles of the lower body. Specific laboratory gait kinetics and kinematics and temporal measures taken on the obstacle course were measured. Lean tissue mass and muscle activation of the lower body muscle groups were assessed. The MVC strength of the knee extensors and 1-RM of the hip extension, hip flexion, knee extension, knee flexion and ankle plantar flexion were measured. A 25% increase on the MVC of the knee extensors (p≤0.05) was reported in the training group. Gains ranging between 197% and 285% were recorded for the 1-RM exercises in the trained subjects with significant improvements found throughout the study (p≤0.05). The exercise-induced strength gains were mediated by hypertrophic and neural factors as shown by 8.7% and 27.7% increases (p≤0.05) in lean tissue mass and integrated electromyographic activity, respectively. Strength gains were accompanied by increases in crossing velocity, stride length and reductions in stride duration, stance and swing time for all gait tasks except for the foot targeting condition. Specific kinematic variables associated with safe obstacle traverse such as vertical obstacle heel clearance, limb flexion, horizontal foot placements prior to and at post obstacle crossing and landing velocities resulted in an improved crossing strategy in the experimental subjects. Significant increases in the vertical and anterior-posterior ground reaction forces accompanied the changes in the gait variables. While further long-term prospective studies of falls rates would be needed to confirm the benefits of lower limb enhanced strength, the findings of the present study provide conclusive evidence of significant improvements to gait efficiency associated with a systematic resistance-training program. It appears, however, that enhanced lower body strength has limited effects on gait tasks involving a dynamic balance component. In addition, due to the larger strength-induced increases in voluntary activation of the leg muscle compared to relatively smaller gains in lean tissue mass, neural adaptations appear to play a greater contributing role in explaining strength gains during the current resistance training protocol.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

INTRODUÇÃO: Comprometimentos na marcha de pacientes com paralisia supranuclear progressiva (PSP) podem aumentar o risco de quedas durante o andar, especialmente em ambientes complexos. OBJETIVO: Descrever o comportamento locomotor de uma paciente com PSP, nas condições de marcha livre e marcha adaptativa. MATERIAIS E MÉTODOS: Estudo de caso de uma paciente com PSP (71 anos). Para análise cinemática, nas condições de marcha livre, com obstáculo baixo e alto, uma câmera digital registrou uma passada completa da paciente. RESULTADOS: Com o aumento da complexidade do ambiente (marcha livre, obstáculo baixo e alto, respectivamente), foi observada diminuição do comprimento do passo (0,37 ± 0,07; 0,30 ± 0,07; 0,26 ± 0,06 m), do comprimento da passada (0,71 ± 0,11; 0,58 ± 0,15; 0,47 ± 0,07 m) e da velocidade da passada (0,55 ± 0,14; 0,43 ± 0,11; 0,36 ± 0,11 m/s). Aumento progressivo ocorreu na duração do duplo suporte da passada livre (29,47%) para a passada antes do obstáculo alto (41,11%). Observou-se, ainda, ligeira diminuição na distância vertical pé/obstáculo alto (membro/abordagem: 7,18 ± 1,88; e membro/suporte: 8,84 ± 2,57 cm) em relação ao obstáculo baixo (membro de abordagem: 8,86 ± 1,88; e membro de suporte: 11,67 ± 2,09 cm). CONCLUSÃO: A PSP afetou de forma evidente a marcha da paciente. Inflexibilidade para a adaptação da marcha às demandas do ambiente foi observada durante a aproximação e a transposição dos obstáculos, o que pode aumentar o risco de tropeços e quedas.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The aim of this study is to analyze dual-task effects on free and adaptive gait in Alzheimer's disease (AD) patients. Nineteen elders with AD participated in the study. A veteran neuropsychiatrist established the degree of AD in the sample. To determine dual-task effects on free and adaptive gait, patients performed five trials for each experimental condition: free and adaptive gait with and without a dual-task (regressive countdown). Spatial and temporal parameters were collected through an optoelectronic tridimensional system. The central stride was analyzed in free gait, and the steps immediately before (approaching phase) and during the obstacle crossing were analyzed in adaptive gait. Results indicated that AD patients walked more slowly during adaptive gait and free gait, using conservative strategies when confronted either with an obstacle or a secondary task. Furthermore, patients sought for stability to perform the tasks, particularly for adaptive gait with dual task, who used anticipatory and online adjustments to perform the task. Therefore, the increase of task complexity enhances cognitive load and risk of falls for AD patients. © 2012 Diego Orcioli-Silva et al.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The aim of this study was to analyze the effect of muscle fatigue in active and inactive young adults on the kinematic and kinetic parameters of normal gait and obstacle crossing. Twenty male subjects were divided into active (10) and inactive (10), based on self-reported physical activity. Participants performed three trials of two tasks (normal gait and obstacle crossing) before and after a fatigue protocol, consisting of repeated sit-to-stand transfers until the instructed pace could no longer be maintained. MANOVAs were used to compare dependent variables with the following factors: physical activity level, fatigue and task. The endurance time in the fatigue protocol was lower for the inactive group. Changes of gait parameters with fatigue, among which increased step width and increased stride speed were the most consistent, were independent of task and physical activity level. These findings indicate that the kinematic and kinetic parameters of gait are affected by muscle fatigue irrespective of the physical activity level of the subjects and type of gait. Inactive individuals used a slightly different strategy than active individuals when crossing an obstacle, independently of muscle fatigue. © 2013.