845 resultados para objective-based coordination
Resumo:
This paper presents a distributed communication based active power curtailment (APC) control scheme for grid connected photovoltaic (PV) systems to address voltage rise. A simple distribution feeder model is presented and simulated using MATLAB. The resource sharing based control scheme proposed is shown to be effective at reducing voltage rise during times of peak generation and low load. Simulations also show the even distribution of APC using simple communications. Simulations demonstrate the versatility of the proposed control method under major communication failure conditions. Further research may lead to possible applications in coordinated electric vehicle (EV) charging.
Resumo:
Artículo CrystEngComm 2013
Resumo:
The copolymerizations of carbon dioxide (CO2) and propylene oxide (PO) were performed using new ternary rare-earth catalyst, It was found that the rare-earth coordination catalyst consisting of Nd(CCl3COO)(3), ZnEt2 and glycerine was very effective for the copolymerization of PO with CO2. The effects of the relative molar ratio and addition order of the catalyst components, copolymerization reaction time, and operating pressure as well as temperature on the copolymerization were systematically investigated. At an appropriate combination of all variables, the yield could be as high as 6875 g/mol Nd per hour at 90 degreesC in a 8 h reaction period.
Middleware for reactive components: An integrated use of context, roles and event based coordination
Resumo:
This dissertation develops a strategic management accounting perspective of inventory routing. The thesis studies the drivers of cost efficiency gains by identifying the role of the underlying cost structure, demand, information sharing, forecasting accuracy, service levels, vehicle fleet, planning horizon and other strategic factors as well as the interaction effects among these factors with respect to performance outcomes. The task is to enhance the knowledge of the strategic situations that favor the implementation of inventory routing systems, understanding cause-and-effect relationships, linkages and gaining a holistic view of the value proposition of inventory routing. The thesis applies an exploratory case study design, which is based on normative quantitative empirical research using optimization, simulation and factor analysis. Data and results are drawn from a real world application to cash supply chains. The first research paper shows that performance gains require a common cost component and cannot be explained by simple linear or affine cost structures. Inventory management and distribution decisions become separable in the absence of a set-dependent cost structure, and neither economies of scope nor coordination problems are present in this case. The second research paper analyzes whether information sharing improves the overall forecasting accuracy. Analysis suggests that the potential for information sharing is limited to coordination of replenishments and that central information do not yield more accurate forecasts based on joint forecasting. The third research paper develops a novel formulation of the stochastic inventory routing model that accounts for minimal service levels and forecasting accuracy. The developed model allows studying the interaction of minimal service levels and forecasting accuracy with the underlying cost structure in inventory routing. Interestingly, results show that the factors minimal service level and forecasting accuracy are not statistically significant, and subsequently not relevant for the strategic decision problem to introduce inventory routing, or in other words, to effectively internalize inventory management and distribution decisions at the supplier. Consequently the main contribution of this thesis is the result that cost benefits of inventory routing are derived from the joint decision model that accounts for the underlying set-dependent cost structure rather than the level of information sharing. This result suggests that the value of information sharing of demand and inventory data is likely to be overstated in prior literature. In other words, cost benefits of inventory routing are primarily determined by the cost structure (i.e. level of fixed costs and transportation costs) rather than the level of information sharing, joint forecasting, forecasting accuracy or service levels.
Resumo:
Comunicación a congreso: Póster presentado en The 4th EuCheMS Chemistry Congress (4ECC), Prague, Czech Republic, August 26–30, 2012
Resumo:
Introduction: Coordination is a strategy chosen by the central nervous system to control the movements and maintain stability during gait. Coordinated multi-joint movements require a complex interaction between nervous outputs, biomechanical constraints, and pro-prioception. Quantitatively understanding and modeling gait coordination still remain a challenge. Surgeons lack a way to model and appreciate the coordination of patients before and after surgery of the lower limbs. Patients alter their gait patterns and their kinematic synergies when they walk faster or slower than normal speed to maintain their stability and minimize the energy cost of locomotion. The goal of this study was to provide a dynamical system approach to quantitatively describe human gait coordination and apply it to patients before and after total knee arthroplasty. Methods: A new method of quantitative analysis of interjoint coordination during gait was designed, providing a general model to capture the whole dynamics and showing the kinematic synergies at various walking speeds. The proposed model imposed a relationship among lower limb joint angles (hips and knees) to parameterize the dynamics of locomotion of each individual. An integration of different analysis tools such as Harmonic analysis, Principal Component Analysis, and Artificial Neural Network helped overcome high-dimensionality, temporal dependence, and non-linear relationships of the gait patterns. Ten patients were studied using an ambulatory gait device (Physilog®). Each participant was asked to perform two walking trials of 30m long at 3 different speeds and to complete an EQ-5D questionnaire, a WOMAC and Knee Society Score. Lower limbs rotations were measured by four miniature angular rate sensors mounted respectively, on each shank and thigh. The outcomes of the eight patients undergoing total knee arthroplasty, recorded pre-operatively and post-operatively at 6 weeks, 3 months, 6 months and 1 year were compared to 2 age-matched healthy subjects. Results: The new method provided coordination scores at various walking speeds, ranged between 0 and 10. It determined the overall coordination of the lower limbs as well as the contribution of each joint to the total coordination. The difference between the pre-operative and post-operative coordination values were correlated with the improvements of the subjective outcome scores. Although the study group was small, the results showed a new way to objectively quantify gait coordination of patients undergoing total knee arthroplasty, using only portable body-fixed sensors. Conclusion: A new method for objective gait coordination analysis has been developed with very encouraging results regarding the objective outcome of lower limb surgery.
Resumo:
When an organisation becomes aware that one of its products may pose a safety risk to customers, it must take appropriate action as soon as possible or it can be held liable. The ability to automatically trace potentially dangerous goods through the supply chain would thus help organisations fulfill their legal obligations in a timely and effective manner. Furthermore, product recall legislation requires manufacturers to separately notify various government agencies, the health department and the public about recall incidents. This duplication of effort and paperwork can introduce errors and data inconsistencies. In this paper, we examine traceability and notification requirements in the product recall domain from two perspectives: the activities carried out during the manufacturing and recall processes and the data collected during the enactment of these processes. We then propose a workflow-based coordination framework to support these data and process requirements.
Resumo:
Whilst radial basis function (RBF) equalizers have been employed to combat the linear and nonlinear distortions in modern communication systems, most of them do not take into account the equalizer's generalization capability. In this paper, it is firstly proposed that the. model's generalization capability can be improved by treating the modelling problem as a multi-objective optimization (MOO) problem, with each objective based on one of several training sets. Then, as a modelling application, a new RBF equalizer learning scheme is introduced based on the directional evolutionary MOO (EMOO). Directional EMOO improves the computational efficiency of conventional EMOO, which has been widely applied in solving MOO problems, by explicitly making use of the directional information. Computer simulation demonstrates that the new scheme can be used to derive RBF equalizers with good performance not only on explaining the training samples but on predicting the unseen samples.
Resumo:
In this paper, a new equalizer learning scheme is introduced based on the algorithm of the directional evolutionary multi-objective optimization (EMOO). Whilst nonlinear channel equalizers such as the radial basis function (RBF) equalizers have been widely studied to combat the linear and nonlinear distortions in the modern communication systems, most of them do not take into account the equalizers' generalization capabilities. In this paper, equalizers are designed aiming at improving their generalization capabilities. It is proposed that this objective can be achieved by treating the equalizer design problem as a multi-objective optimization (MOO) problem, with each objective based on one of several training sets, followed by deriving equalizers with good capabilities of recovering the signals for all the training sets. Conventional EMOO which is widely applied in the MOO problems suffers from disadvantages such as slow convergence speed. Directional EMOO improves the computational efficiency of the conventional EMOO by explicitly making use of the directional information. The new equalizer learning scheme based on the directional EMOO is applied to the RBF equalizer design. Computer simulation demonstrates that the new scheme can be used to derive RBF equalizers with good generalization capabilities, i.e., good performance on predicting the unseen samples.