799 resultados para object tracking
Resumo:
In this paper we introduce a formation control loop that maximizes the performance of the cooperative perception of a tracked target by a team of mobile robots, while maintaining the team in formation, with a dynamically adjustable geometry which is a function of the quality of the target perception by the team. In the formation control loop, the controller module is a distributed non-linear model predictive controller and the estimator module fuses local estimates of the target state, obtained by a particle filter at each robot. The two modules and their integration are described in detail, including a real-time database associated to a wireless communication protocol that facilitates the exchange of state data while reducing collisions among team members. Simulation and real robot results for indoor and outdoor teams of different robots are presented. The results highlight how our method successfully enables a team of homogeneous robots to minimize the total uncertainty of the tracked target cooperative estimate while complying with performance criteria such as keeping a pre-set distance between the teammates and the target, avoiding collisions with teammates and/or surrounding obstacles.
Resumo:
Dissertação para obtenção do Grau de Mestre em Engenharia Informática
Resumo:
Les troubles du spectre autistique (TSA) sont actuellement caractérisés par une triade d'altérations, incluant un dysfonctionnement social, des déficits de communication et des comportements répétitifs. L'intégration simultanée de multiples sens est cruciale dans la vie quotidienne puisqu'elle permet la création d'un percept unifié. De façon similaire, l'allocation d'attention à de multiples stimuli simultanés est critique pour le traitement de l'information environnementale dynamique. Dans l'interaction quotidienne avec l'environnement, le traitement sensoriel et les fonctions attentionnelles sont des composantes de base dans le développement typique (DT). Bien qu'ils ne fassent pas partie des critères diagnostiques actuels, les difficultés dans les fonctions attentionnelles et le traitement sensoriel sont très courants parmi les personnes autistes. Pour cela, la présente thèse évalue ces fonctions dans deux études séparées. La première étude est fondée sur la prémisse que des altérations dans le traitement sensoriel de base pourraient être à l'origine des comportements sensoriels atypiques chez les TSA, tel que proposé par des théories actuelles des TSA. Nous avons conçu une tâche de discrimination de taille intermodale, afin d'investiguer l'intégrité et la trajectoire développementale de l'information visuo-tactile chez les enfants avec un TSA (N = 21, âgés de 6 à18 ans), en comparaison à des enfants à DT, appariés sur l’âge et le QI de performance. Dans une tâche à choix forcé à deux alternatives simultanées, les participants devaient émettre un jugement sur la taille de deux stimuli, basé sur des inputs unisensoriels (visuels ou tactiles) ou multisensoriels (visuo-tactiles). Des seuils différentiels ont évalué la plus petite différence à laquelle les participants ont été capables de faire la discrimination de taille. Les enfants avec un TSA ont montré une performance diminuée et pas d'effet de maturation aussi bien dans les conditions unisensorielles que multisensorielles, comparativement aux participants à DT. Notre première étude étend donc des résultats précédents d'altérations dans le traitement multisensoriel chez les TSA au domaine visuo-tactile. Dans notre deuxième étude, nous avions évalué les capacités de poursuite multiple d’objets dans l’espace (3D-Multiple Object Tracking (3D-MOT)) chez des adultes autistes (N = 15, âgés de 18 à 33 ans), comparés à des participants contrôles appariés sur l'âge et le QI, qui devaient suivre une ou trois cibles en mouvement parmi des distracteurs dans un environnement de réalité virtuelle. Les performances ont été mesurées par des seuils de vitesse, qui évaluent la plus grande vitesse à laquelle des observateurs sont capables de suivre des objets en mouvement. Les individus autistes ont montré des seuils de vitesse réduits dans l'ensemble, peu importe le nombre d'objets à suivre. Ces résultats étendent des résultats antérieurs d'altérations au niveau des mécanismes d'attention en autisme quant à l'allocation simultanée de l'attention envers des endroits multiples. Pris ensemble, les résultats de nos deux études révèlent donc des altérations chez les TSA quant au traitement simultané d'événements multiples, que ce soit dans une modalité ou à travers des modalités, ce qui peut avoir des implications importantes au niveau de la présentation clinique de cette condition.
Resumo:
Pedicle screw insertion technique has made revolution in the surgical treatment of spinal fractures and spinal disorders. Although X- ray fluoroscopy based navigation is popular, there is risk of prolonged exposure to X- ray radiation. Systems that have lower radiation risk are generally quite expensive. The position and orientation of the drill is clinically very important in pedicle screw fixation. In this paper, the position and orientation of the marker on the drill is determined using pattern recognition based methods, using geometric features, obtained from the input video sequence taken from CCD camera. A search is then performed on the video frames after preprocessing, to obtain the exact position and orientation of the drill. An animated graphics, showing the instantaneous position and orientation of the drill is then overlaid on the processed video for real time drill control and navigation
Resumo:
This paper describes a new approach to detect and track maritime objects in real time. The approach particularly addresses the highly dynamic maritime environment, panning cameras, target scale changes, and operates on both visible and thermal imagery. Object detection is based on agglomerative clustering of temporally stable features. Object extents are first determined based on persistence of detected features and their relative separation and motion attributes. An explicit cluster merging and splitting process handles object creation and separation. Stable object clus- ters are tracked frame-to-frame. The effectiveness of the approach is demonstrated on four challenging real-world public datasets.
Resumo:
The integration of CMOS cameras with embedded processors and wireless communication devices has enabled the development of distributed wireless vision systems. Wireless Vision Sensor Networks (WVSNs), which consist of wirelessly connected embedded systems with vision and sensing capabilities, provide wide variety of application areas that have not been possible to realize with the wall-powered vision systems with wired links or scalar-data based wireless sensor networks. In this paper, the design of a middleware for a wireless vision sensor node is presented for the realization of WVSNs. The implemented wireless vision sensor node is tested through a simple vision application to study and analyze its capabilities, and determine the challenges in distributed vision applications through a wireless network of low-power embedded devices. The results of this paper highlight the practical concerns for the development of efficient image processing and communication solutions for WVSNs and emphasize the need for cross-layer solutions that unify these two so-far-independent research areas.
Resumo:
Tesis en inglés. Eliminadas las páginas en blanco del pdf
Resumo:
We present a user supported tracking framework that combines automatic tracking with extended user input to create error free tracking results that are suitable for interactive video production. The goal of our approach is to keep the necessary user input as small as possible. In our framework, the user can select between different tracking algorithms - existing ones and new ones that are described in this paper. Furthermore, the user can automatically fuse the results of different tracking algorithms with our robust fusion approach. The tracked object can be marked in more than one frame, which can significantly improve the tracking result. After tracking, the user can validate the results in an easy way, thanks to the support of a powerful interpolation technique. The tracking results are iteratively improved until the complete track has been found. After the iterative editing process the tracking result of each object is stored in an interactive video file that can be loaded by our player for interactive videos.
Resumo:
In sports games, it is often necessary to perceive a large number of moving objects (e.g., the ball and players). In this context, the role of peripheral vision for processing motion information in the periphery is often discussed especially when motor responses are required. In an attempt to test the basal functionality of peripheral vision in those sports-games situations, a Multiple Object Tracking (MOT) task that requires to track a certain number of targets amidst distractors, was chosen. Participants’ primary task was to recall four targets (out of 10 rectangular stimuli) after six seconds of quasi-random motion. As a second task, a button had to be pressed if a target change occurred (Exp 1: stop vs. form change to a diamond for 0.5 s; Exp 2: stop vs. slowdown for 0.5 s). While eccentricities of changes (5-10° vs. 15-20°) were manipulated, decision accuracy (recall and button press correct), motor response time as well as saccadic reaction time were calculated as dependent variables. Results show that participants indeed used peripheral vision to detect changes, because either no or very late saccades to the changed target were executed in correct trials. Moreover, a saccade was more often executed when eccentricities were small. Response accuracies were higher and response times were lower in the stop conditions of both experiments while larger eccentricities led to higher response times in all conditions. Summing up, it could be shown that monitoring targets and detecting changes can be processed by peripheral vision only and that a monitoring strategy on the basis of peripheral vision may be the optimal one as saccades may be afflicted with certain costs. Further research is planned to address the question whether this functionality is also evident in sports tasks.
Resumo:
In sports games, it is often necessary to perceive a large number of moving objects (e.g., the ball and players). In this context, the role of peripheral vision for processing motion information in the periphery is often discussed especially when motor responses are required. In an attempt to test the capability of using peripheral vision in those sports-games situations, a Multiple-Object-Tracking task that requires to track a certain number of targets amidst distractors, was chosen to determine the sensitivity of detecting target changes with peripheral vision only. Participants’ primary task was to recall four targets (out of 10 rectangular stimuli) after six seconds of quasi-random motion. As a second task, a button had to be pressed if a target change occurred (Exp 1: stop vs. form change to a diamond for 0.5 s; Exp 2: stop vs. slowdown for 0.5 s). Eccentricities of changes (5-10° vs. 15-20°) were manipulated, decision accuracy (recall and button press correct), motor response time and saccadic reaction time (change onset to saccade onset) were calculated and eye-movements were recorded. Results show that participants indeed used peripheral vision to detect changes, because either no or very late saccades to the changed target were executed in correct trials. Moreover, a saccade was more often executed when eccentricities were small. Response accuracies were higher and response times were lower in the stop conditions of both experiments while larger eccentricities led to higher response times in all conditions. Summing up, it could be shown that monitoring targets and detecting changes can be processed by peripheral vision only and that a monitoring strategy on the basis of peripheral vision may be the optimal one as saccades may be afflicted with certain costs. Further research is planned to address the question whether this functionality is also evident in sports tasks.
Resumo:
In the current study it is investigated whether peripheral vision can be used to monitor multi-ple moving objects and to detect single-target changes. For this purpose, in Experiment 1, a modified MOT setup with a large projection and a constant-position centroid phase had to be checked first. Classical findings regarding the use of a virtual centroid to track multiple ob-jects and the dependency of tracking accuracy on target speed could be successfully replicat-ed. Thereafter, the main experimental variations regarding the manipulation of to-be-detected target changes could be introduced in Experiment 2. In addition to a button press used for the detection task, gaze behavior was assessed using an integrated eye-tracking system. The anal-ysis of saccadic reaction times in relation to the motor response shows that peripheral vision is naturally used to detect motion and form changes in MOT because the saccade to the target occurred after target-change offset. Furthermore, for changes of comparable task difficulties, motion changes are detected better by peripheral vision than form changes. Findings indicate that capabilities of the visual system (e.g., visual acuity) affect change detection rates and that covert-attention processes may be affected by vision-related aspects like spatial uncertainty. Moreover, it is argued that a centroid-MOT strategy might reduce the amount of saccade-related costs and that eye-tracking seems to be generally valuable to test predictions derived from theories on MOT. Finally, implications for testing covert attention in applied settings are proposed.
Resumo:
Multi-camera 3D tracking systems with overlapping cameras represent a powerful mean for scene analysis, as they potentially allow greater robustness than monocular systems and provide useful 3D information about object location and movement. However, their performance relies on accurately calibrated camera networks, which is not a realistic assumption in real surveillance environments. Here, we introduce a multi-camera system for tracking the 3D position of a varying number of objects and simultaneously refin-ing the calibration of the network of overlapping cameras. Therefore, we introduce a Bayesian framework that combines Particle Filtering for tracking with recursive Bayesian estimation methods by means of adapted transdimensional MCMC sampling. Addi-tionally, the system has been designed to work on simple motion detection masks, making it suitable for camera networks with low transmission capabilities. Tests show that our approach allows a successful performance even when starting from clearly inaccurate camera calibrations, which would ruin conventional approaches.
Resumo:
En el presente trabajo se aborda el problema del seguimiento de objetos, cuyo objetivo es encontrar la trayectoria de un objeto en una secuencia de video. Para ello, se ha desarrollado un método de seguimiento-por-detección que construye un modelo de apariencia en un dominio comprimido usando una nueva e innovadora técnica: “compressive sensing”. La única información necesaria es la situación del objeto a seguir en la primera imagen de la secuencia. El seguimiento de objetos es una aplicación típica del área de visión artificial con un desarrollo de bastantes años. Aun así, sigue siendo una tarea desafiante debido a varios factores: cambios de iluminación, oclusión parcial o total de los objetos y complejidad del fondo de la escena, los cuales deben ser considerados para conseguir un seguimiento robusto. Para lidiar lo más eficazmente posible con estos factores, hemos propuesto un algoritmo de tracking que entrena un clasificador Máquina Vector Soporte (“Support Vector Machine” o SVM en sus siglas en inglés) en modo online para separar los objetos del fondo de la escena. Con este fin, hemos generado nuestro modelo de apariencia por medio de un descriptor de características muy robusto que describe los objetos y el fondo devolviendo un vector de dimensiones muy altas. Por ello, se ha implementado seguidamente un paso para reducir la dimensionalidad de dichos vectores y así poder entrenar nuestro clasificador en un dominio mucho menor, al que denominamos domino comprimido. La reducción de la dimensionalidad de los vectores de características se basa en la teoría de “compressive sensing”, que dice que una señal con poca dispersión (pocos componentes distintos de cero) puede estar bien representada, e incluso puede ser reconstruida, a partir de un conjunto muy pequeño de muestras. La teoría de “compressive sensing” se ha aplicado satisfactoriamente en este trabajo y diferentes técnicas de medida y reconstrucción han sido probadas para evaluar nuestros vectores reducidos, de tal forma que se ha verificado que son capaces de preservar la información de los vectores originales. También incluimos una actualización del modelo de apariencia del objeto a seguir, mediante el reentrenamiento de nuestro clasificador en cada cuadro de la secuencia con muestras positivas y negativas, las cuales han sido obtenidas a partir de la posición predicha por el algoritmo de seguimiento en cada instante temporal. El algoritmo propuesto ha sido evaluado en distintas secuencias y comparado con otros algoritmos del estado del arte de seguimiento, para así demostrar el éxito de nuestro método.
Resumo:
En esta tesis se presenta un análisis en profundidad de cómo se deben utilizar dos tipos de métodos directos, Lucas-Kanade e Inverse Compositional, en imágenes RGB-D y se analiza la capacidad y precisión de los mismos en una serie de experimentos sintéticos. Estos simulan imágenes RGB, imágenes de profundidad (D) e imágenes RGB-D para comprobar cómo se comportan en cada una de las combinaciones. Además, se analizan estos métodos sin ninguna técnica adicional que modifique el algoritmo original ni que lo apoye en su tarea de optimización tal y como sucede en la mayoría de los artículos encontrados en la literatura. Esto se hace con el fin de poder entender cuándo y por qué los métodos convergen o divergen para que así en el futuro cualquier interesado pueda aplicar los conocimientos adquiridos en esta tesis de forma práctica. Esta tesis debería ayudar al futuro interesado a decidir qué algoritmo conviene más en una determinada situación y debería también ayudarle a entender qué problemas le pueden dar estos algoritmos para poder poner el remedio más apropiado. Las técnicas adicionales que sirven de remedio para estos problemas quedan fuera de los contenidos que abarca esta tesis, sin embargo, sí se hace una revisión sobre ellas.---ABSTRACT---This thesis presents an in-depth analysis about how direct methods such as Lucas- Kanade and Inverse Compositional can be applied in RGB-D images. The capability and accuracy of these methods is also analyzed employing a series of synthetic experiments. These simulate the efects produced by RGB images, depth images and RGB-D images so that diferent combinations can be evaluated. Moreover, these methods are analyzed without using any additional technique that modifies the original algorithm or that aids the algorithm in its search for a global optima unlike most of the articles found in the literature. Our goal is to understand when and why do these methods converge or diverge so that in the future, the knowledge extracted from the results presented here can efectively help a potential implementer. After reading this thesis, the implementer should be able to decide which algorithm fits best for a particular task and should also know which are the problems that have to be addressed in each algorithm so that an appropriate correction is implemented using additional techniques. These additional techniques are outside the scope of this thesis, however, they are reviewed from the literature.