950 resultados para nuvem de partículas


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work develops a methodology for defining the maximum active power being injected into predefined nodes in the studied distribution networks, considering the possibility of multiple accesses of generating units. The definition of these maximum values is obtained from an optimization study, in which further losses should not exceed those of the base case, i.e., without the presence of distributed generation. The restrictions on the loading of the branches and voltages of the system are respected. To face the problem it is proposed an algorithm, which is based on the numerical method called particle swarm optimization, applied to the study of AC conventional load flow and optimal load flow for maximizing the penetration of distributed generation. Alternatively, the Newton-Raphson method was incorporated to resolution of the load flow. The computer program is performed with the SCILAB software. The proposed algorithm is tested with the data from the IEEE network with 14 nodes and from another network, this one from the Rio Grande do Norte State, at a high voltage (69 kV), with 25 nodes. The algorithm defines allowed values of nominal active power of distributed generation, in percentage terms relative to the demand of the network, from reference values

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This thesis proposes an architecture of a new multiagent system framework for hybridization of metaheuristics inspired on the general Particle Swarm Optimization framework (PSO). The main contribution is to propose an effective approach to solve hard combinatory optimization problems. The choice of PSO as inspiration was given because it is inherently multiagent, allowing explore the features of multiagent systems, such as learning and cooperation techniques. In the proposed architecture, particles are autonomous agents with memory and methods for learning and making decisions, using search strategies to move in the solution space. The concepts of position and velocity originally defined in PSO are redefined for this approach. The proposed architecture was applied to the Traveling Salesman Problem and to the Quadratic Assignment Problem, and computational experiments were performed for testing its effectiveness. The experimental results were promising, with satisfactory performance, whereas the potential of the proposed architecture has not been fully explored. For further researches, the proposed approach will be also applied to multiobjective combinatorial optimization problems, which are closer to real-world problems. In the context of applied research, we intend to work with both students at the undergraduate level and a technical level in the implementation of the proposed architecture in real-world problems

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Combinatorial optimization problems have the goal of maximize or minimize functions defined over a finite domain. Metaheuristics are methods designed to find good solutions in this finite domain, sometimes the optimum solution, using a subordinated heuristic, which is modeled for each particular problem. This work presents algorithms based on particle swarm optimization (metaheuristic) applied to combinatorial optimization problems: the Traveling Salesman Problem and the Multicriteria Degree Constrained Minimum Spanning Tree Problem. The first problem optimizes only one objective, while the other problem deals with many objectives. In order to evaluate the performance of the algorithms proposed, they are compared, in terms of the quality of the solutions found, to other approaches

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

70.00% 70.00%

Publicador:

Resumo:

This work proposes two optimization algorithms for the solution of the Berth Allocation Problem (PAB). Due to the economic development of the country, it became necessary for the improvement of means of transport, which mainly shipping. For this, you need a better system management port, you will receive a lot of ships carrying cargo. In this work the PAB is approached so that the goals are to reduce costs and time handling in ports. For this, we applied two computational techniques, genetic algorithms and optimization for cloud particles, to obtain the best results for this problem. The results obtained with each type of algorithm are compared to conclude which method is more efficient for the port system

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Traditional applications of feature selection in areas such as data mining, machine learning and pattern recognition aim to improve the accuracy and to reduce the computational cost of the model. It is done through the removal of redundant, irrelevant or noisy data, finding a representative subset of data that reduces its dimensionality without loss of performance. With the development of research in ensemble of classifiers and the verification that this type of model has better performance than the individual models, if the base classifiers are diverse, comes a new field of application to the research of feature selection. In this new field, it is desired to find diverse subsets of features for the construction of base classifiers for the ensemble systems. This work proposes an approach that maximizes the diversity of the ensembles by selecting subsets of features using a model independent of the learning algorithm and with low computational cost. This is done using bio-inspired metaheuristics with evaluation filter-based criteria

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Due to great difficulty of accurate solution of Combinatorial Optimization Problems, some heuristic methods have been developed and during many years, the analysis of performance of these approaches was not carried through in a systematic way. The proposal of this work is to make a statistical analysis of heuristic approaches to the Traveling Salesman Problem (TSP). The focus of the analysis is to evaluate the performance of each approach in relation to the necessary computational time until the attainment of the optimal solution for one determined instance of the TSP. Survival Analysis, assisted by methods for the hypothesis test of the equality between survival functions was used. The evaluated approaches were divided in three classes: Lin-Kernighan Algorithms, Evolutionary Algorithms and Particle Swarm Optimization. Beyond those approaches, it was enclosed in the analysis, a memetic algorithm (for symmetric and asymmetric TSP instances) that utilizes the Lin-Kernighan heuristics as its local search procedure

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The distribution of petroleum products through pipeline networks is an important problem that arises in production planning of refineries. It consists in determining what will be done in each production stage given a time horizon, concerning the distribution of products from source nodes to demand nodes, passing through intermediate nodes. Constraints concerning storage limits, delivering time, sources availability, limits on sending or receiving, among others, have to be satisfied. This problem can be viewed as a biobjective problem that aims at minimizing the time needed to for transporting the set of packages through the network and the successive transmission of different products in the same pipe is called fragmentation. This work are developed three algorithms that are applied to this problem: the first algorithm is discrete and is based on Particle Swarm Optimization (PSO), with local search procedures and path-relinking proposed as velocity operators, the second and the third algorithms deal of two versions based on the Non-dominated Sorting Genetic Algorithm II (NSGA-II). The proposed algorithms are compared to other approaches for the same problem, in terms of the solution quality and computational time spent, so that the efficiency of the developed methods can be evaluated

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The separation methods are reduced applications as a result of the operational costs, the low output and the long time to separate the uids. But, these treatment methods are important because of the need for extraction of unwanted contaminants in the oil production. The water and the concentration of oil in water should be minimal (around 40 to 20 ppm) in order to take it to the sea. Because of the need of primary treatment, the objective of this project is to study and implement algorithms for identification of polynomial NARX (Nonlinear Auto-Regressive with Exogenous Input) models in closed loop, implement a structural identification, and compare strategies using PI control and updated on-line NARX predictive models on a combination of three-phase separator in series with three hydro cyclones batteries. The main goal of this project is to: obtain an optimized process of phase separation that will regulate the system, even in the presence of oil gushes; Show that it is possible to get optimized tunings for controllers analyzing the mesh as a whole, and evaluate and compare the strategies of PI and predictive control applied to the process. To accomplish these goals a simulator was used to represent the three phase separator and hydro cyclones. Algorithms were developed for system identification (NARX) using RLS(Recursive Least Square), along with methods for structure models detection. Predictive Control Algorithms were also implemented with NARX model updated on-line, and optimization algorithms using PSO (Particle Swarm Optimization). This project ends with a comparison of results obtained from the use of PI and predictive controllers (both with optimal state through the algorithm of cloud particles) in the simulated system. Thus, concluding that the performed optimizations make the system less sensitive to external perturbations and when optimized, the two controllers show similar results with the assessment of predictive control somewhat less sensitive to disturbances

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A interação nuclear-seguidor tem sido raramente registrada entre peixes de riachos Neotropicais. Este tipo de associação foi observada em um riacho de cabeceira, no sistema do Alto rio Paraná envolvendo o cascudinho, Aspidoras fuscoguttatus, como espécie nuclear, e Knodus moenkhausii, Poecilia reticulata e Astyanax altiparanae como seus seguidores. Indivíduos de Aspidoras fuscoguttatus revolveram o substrato durante alimentação, promovendo a suspensão de sedimento. Os seguidores, por sua vez, movimentaram-se pela nuvem de partículas em suspensão, capturando itens alimentares. As particulas alimentares em suspensão parecem não ser utilizadas pelo cascudinho, mas tornam-se disponíveis para K. moenkhausii, P. reticulata e A. altiparanae. O comportamento de seguidor representa uma tática alimentar alternativa para estas espécies, reforçando a idéia geral de plasticidade comportamental entre as espécies seguidoras.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Recentemente diversas técnicas de computação evolucionárias têm sido utilizadas em áreas como estimação de parâmetros de processos dinâmicos lineares e não lineares ou até sujeitos a incertezas. Isso motiva a utilização de algoritmos como o otimizador por nuvem de partículas (PSO) nas referidas áreas do conhecimento. Porém, pouco se sabe sobre a convergência desse algoritmo e, principalmente, as análises e estudos realizados têm se concentrado em resultados experimentais. Por isso, é objetivo deste trabalho propor uma nova estrutura para o PSO que permita analisar melhor a convergência do algoritmo de forma analítica. Para isso, o PSO é reestruturado para assumir uma forma matricial e reformulado como um sistema linear por partes. As partes serão analisadas de forma separada e será proposta a inserção de um fator de esquecimento que garante que a parte mais significativa deste sistema possua autovalores dentro do círculo de raio unitário. Também será realizada a análise da convergência do algoritmo como um todo, utilizando um critério de convergência quase certa, aplicável a sistemas chaveados. Na sequência, serão realizados testes experimentais de maneira a verificar o comportamento dos autovalores após a inserção do fator de esquecimento. Posteriormente, os algoritmos de identificação de parâmetros tradicionais serão combinados com o PSO matricial, de maneira a tornar os resultados da identificação tão bons ou melhores que a identificação apenas com o PSO ou, apenas com os algoritmos tradicionais. Os resultados mostram a convergência das partículas em uma região delimitada e que as funções obtidas após a combinação do algoritmo PSO matricial com os algoritmos convencionais, apresentam maior generalização para o sistema apresentado. As conclusões a que se chega é que a hibridização, apesar de limitar a busca por uma partícula mais apta do PSO, permite um desempenho mínimo para o algoritmo e ainda possibilita melhorar o resultado obtido com os algoritmos tradicionais, permitindo a representação do sistema aproximado em quantidades maiores de frequências.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The Quadratic Minimum Spanning Tree (QMST) problem is a generalization of the Minimum Spanning Tree problem in which, beyond linear costs associated to each edge, quadratic costs associated to each pair of edges must be considered. The quadratic costs are due to interaction costs between the edges. When interactions occur between adjacent edges only, the problem is named Adjacent Only Quadratic Minimum Spanning Tree (AQMST). Both QMST and AQMST are NP-hard and model a number of real world applications involving infrastructure networks design. Linear and quadratic costs are summed in the mono-objective versions of the problems. However, real world applications often deal with conflicting objectives. In those cases, considering linear and quadratic costs separately is more appropriate and multi-objective optimization provides a more realistic modelling. Exact and heuristic algorithms are investigated in this work for the Bi-objective Adjacent Only Quadratic Spanning Tree Problem. The following techniques are proposed: backtracking, branch-and-bound, Pareto Local Search, Greedy Randomized Adaptive Search Procedure, Simulated Annealing, NSGA-II, Transgenetic Algorithm, Particle Swarm Optimization and a hybridization of the Transgenetic Algorithm with the MOEA-D technique. Pareto compliant quality indicators are used to compare the algorithms on a set of benchmark instances proposed in literature.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The Quadratic Minimum Spanning Tree (QMST) problem is a generalization of the Minimum Spanning Tree problem in which, beyond linear costs associated to each edge, quadratic costs associated to each pair of edges must be considered. The quadratic costs are due to interaction costs between the edges. When interactions occur between adjacent edges only, the problem is named Adjacent Only Quadratic Minimum Spanning Tree (AQMST). Both QMST and AQMST are NP-hard and model a number of real world applications involving infrastructure networks design. Linear and quadratic costs are summed in the mono-objective versions of the problems. However, real world applications often deal with conflicting objectives. In those cases, considering linear and quadratic costs separately is more appropriate and multi-objective optimization provides a more realistic modelling. Exact and heuristic algorithms are investigated in this work for the Bi-objective Adjacent Only Quadratic Spanning Tree Problem. The following techniques are proposed: backtracking, branch-and-bound, Pareto Local Search, Greedy Randomized Adaptive Search Procedure, Simulated Annealing, NSGA-II, Transgenetic Algorithm, Particle Swarm Optimization and a hybridization of the Transgenetic Algorithm with the MOEA-D technique. Pareto compliant quality indicators are used to compare the algorithms on a set of benchmark instances proposed in literature.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Os métodos numéricos convencionais, baseados em malhas, têm sido amplamente aplicados na resolução de problemas da Dinâmica dos Fluidos Computacional. Entretanto, em problemas de escoamento de fluidos que envolvem superfícies livres, grandes explosões, grandes deformações, descontinuidades, ondas de choque etc., estes métodos podem apresentar algumas dificuldades práticas quando da resolução destes problemas. Como uma alternativa viável, existem os métodos de partículas livre de malhas. Neste trabalho é feita uma introdução ao método Lagrangeano de partículas, livre de malhas, Smoothed Particle Hydrodynamics (SPH) voltado para a simulação numérica de escoamentos de fluidos newtonianos compressíveis e quase-incompressíveis. Dois códigos numéricos foram desenvolvidos, uma versão serial e outra em paralelo, empregando a linguagem de programação C/C++ e a Compute Unified Device Architecture (CUDA), que possibilita o processamento em paralelo empregando os núcleos das Graphics Processing Units (GPUs) das placas dedeo da NVIDIA Corporation. Os resultados numéricos foram validados e a eficiência computacional avaliada considerandose a resolução dos problemas unidimensionais Shock Tube e Blast Wave e bidimensional da Cavidade (Shear Driven Cavity Problem).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Um método numérico nodal livre de erros de truncamento espacial é desenvolvido para problemas adjuntos de transporte de partículas neutras monoenergéticas em geometria unidimensional com fonte fixa na formulação de ordenadas discretas (SN). As incógnitas no método são os fluxos angulares adjuntos médios nos nodos e os fluxos angulares adjuntos nas fronteiras dos nodos, e os valores numéricos gerados para essas quantidades são os obtidos a partir da solução analítica das equações SN adjuntas. O método é fundamentado no uso da convencional equação adjunta SN discretizada de balanço espacial, que é válida para cada nodo de discretização espacial e para cada direção discreta da quadratura angular, e de uma equação auxiliar adjunta não convencional, que contém uma função de Green para os fluxos angulares adjuntos médios nos nodos em termos dos fluxos angulares adjuntos emergentes das fronteiras dos nodos e da fonte adjunta interior. Resultados numéricos são fornecidos para ilustrarem a precisão do método proposto.