838 resultados para nutritional recovery
Resumo:
OBJECTIVE: Protein malnutrition is characterized by a number of morphologic and physiologic alterations, including intestinal mucosal atrophy and impaired nutrient absorption. Impaired absorption accentuates nutritional deficiency and accelerates body weight loss and changes in body chemistry. Because leucine is a ketogenic and oxidative amino acid and stimulates the protein synthesis, we examined the ability of young rats to recover from protein malnutrition by feeding them a control balanced or a leucine-rich diet for 60 d.METHODS: At the end of the 60-d period, body, liver, and muscle weights; glucose, methionine, and leucine intestinal absorption; and carcass chemical composition were evaluated.RESULTS: Body weight gain was higher in the control balanced and leucine-rich groups than in control rats, indicating that adequate refeeding allows body weight to recover in these groups. Methionine and glucose absorptions were impaired in malnourished rats but were restored after nutritional recovery. The leucine-rich diet resulted in an increase in carcass collagen nitrogen but maintained the carcass structural nitrogen.CONCLUSIONS: These results indicated that leucine supplementation during nutritional recovery from protein malnutrition improves protein carcass restoration. However, the precise mechanism of the leucine effects involved in this response remains to be elucidated.
Resumo:
The effect of protein-calorie malnutrition during gestation on the brain amino acids of rat pups was studied following nutritional recovery during lactation. The brain amino acids of rat pups born to dam rats malnourished during gestation were studied after these rat pups received proper nutrition during lactation. Pregnant rats were fed a 1% protein diet with total caloric intake restricted to half that of controls. After birth, the offspring of rats fed on deficient diets were nurtured up to the 28th day postpartum by foster mothers receiving adequate diets. At this time, the offspring were killed. The control group consisted of offspring from pregnant rats fed a diet with adequate protein (21%) and calories during the entire gestation and lactation period. Quantitation of brain amino acids in the pups at 28 days postpartum showed lower concentrations of essential and nonessential amino acids in the rats malnourished during gestation. Concentrations of histidine, glycine, and α-aminobutyric acids were all reduced. These findings demonstrate that the brains of rat pups malnourished during gestation show persistent decreases in specific brain amino acids after adequate postpartum nutrition.
Resumo:
Maternal malnutrition was shown to affect early growth and leads to permanent alterations in insulin secretion and sensitivity of offspring. In addition, epidemiological studies showed an association between low birth weight and glucose intolerance in adult life. To understand these interactions better, we investigated the insulin secretion by isolated islets and the early events related to insulin action in the hind-limb muscle of adult rats fed a diet of 17% protein (control) or 6% protein [low (LP) protein] during fetal life, suckling and after weaning, and in rats receiving 6% protein during fetal life and suckling followed by a 17% protein diet after weaning (recovered). The basal and maximal insulin secretion by islets from rats fed LP diet and the basal release by islets from recovered rats were significantly lower than that of control rats. The dose-response curves to glucose of islets from LP and recovered groups were shifted to the right compared to control islets, with the half-maximal response (EC 50) occurring at 16.9 ± 1.3, 12.4 ± 0.5 and 8.4 ± 0.1 mmol/L, respectively. The levels of insulin receptor, as well as insulin receptor substrate-1 and phosphorylation and the association between insulin receptor substrate-1 and phosphatidylinositol 3-kinase were greater in rats fed a LP diet than in control rats. In recovered rats, these variables were not significantly different from those of the other two groups. These results suggest that glucose homeostasis is maintained in LP and recovered rats by an increased sensitivity to insulin as a result of alterations in the early steps of the insulin signal transduction pathway.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Objectives: To assess the influence of moderate, acute weight loss on on-water rowing performance when aggressive nutritional recovery strategies were used in the two hours between weigh in and racing. Methods: Competitive rowers (n=17) undertook three on-water 1800 m time trials under cool conditions ( mean (SD) temperature 8.4 (2.0)degrees C), each separated by 48 hours. No weight limit was imposed for the first time trial-that is, unrestricted body mass (UNR1). However, one of the remaining two trials followed a 4% loss in body mass in the previous 24 hours (WT-4%). No weight limit was imposed for the other trial (UNR2). Aggressive nutritional recovery strategies (WT-4%, 2.3 g/kg carbohydrate, 34 mg/kg Na+, and 28.4 ml/kg fluid; UNR, ad libitum) were used in the first 90 minutes of the two hours between weigh in and performance trials. Results: WT-4% had only a small and statistically non-significant effect on the on-water time trial performance ( mean 1.0 second, 95% confidence interval (CI) 20.9 to 2.8; p=0.29) compared with UNR. This was despite a significant decrease in plasma volume at the time of weigh in for WT-4% compared with UNR (-9.2%, 95% CI -12.8% to -5.6%; p
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Objective: The purpose of the present study was to examine insulin secretion in rats submitted to protein restriction and nutritional recovery associated or not to physical training. Methods: The experiment was designed in two sets of five weeks each. In the first set the rats were fed a nonnal-protein diet(17%-control group) or a low-protein diet (6%-malnourished group) for five weeks. After this, all animals were fed the 17% protein diet and separated into four groups: sedentary control(SC); trained eontrol(TC); sedentary recovered(SR) and trained recovered(TR). TC and TR rats performed swimming exercise. Results: The results indicated efficiency of the 6% protein diet in producing signs of malnutrition, as reduction in body weight gain and serum albumin levels, as well as liver fat. Serum insulin in the fed state and insulin secretion by isolated pancreatic islets in response to glucose were Keduced,but peripheral sensitivity to insulin was increased and glucose tolerance was not changed in the protein deficient rats, indicating adaptation to malnutrition. Diet protocol for nutritional recovery was efficient in repairing body weight gain, serum albumin and liver fat levels of the previously malnourished rats. Glucose induced insulin release by pancreatic islets remained low after nutritional recovery. Insulin secretion by the islets isolated from rats submitted to exercise training during nutritional recovery was improved when compared with the sedentary animals. Conclusion: This indicates that exercise training may be useful in the treatment of protein calorie malnutrition, concerning to glucose induced insulip secretion.
Resumo:
O presente estudo visou avaliar a ingestão alimentar, ganho de peso e metabolismo muscular da glicose em ratos submetidos ao treinamento aeróbio durante recuperação de desnutrição protéica. Para isso, 60 ratos da linhagem Wistar, machos, foram separados nos grupos normoprotéico (NP) e hipoprotéico (HP), de acordo com a dieta NP (17% de proteína) ou HP (6% de proteína), respectivamente, recebida do desmame (21 dias) aos 90 dias de idade. Todos os animais passaram então, a receber a dieta NP e foram submetidos (treinado TRE) ou não (sedentário - SED) ao treinamento físico, que consistiu de corrida em esteira rolante, 25m/min, 50 minutos ao dia, cinco dias na semana, durante 30 dias, compondo os grupos NP-SED, NP-TRE, HP/NP-SED e HP/NP-TRE. Foi avaliado o metabolismo da glicose em fatias de músculo sóleo incubado em presença de insulina (100miU/L) e glicose (5,5mM, contendo [C14] glicose e [H³] 2-deoxiglicose). A ingestão alimentar diária (g/100g de peso corporal) do grupo HP/NP-TRE (24,39 ± 4,07) foi maior do que o grupo HP/NP-SED (21,62 ± 4,69). O ganho de peso (g) foi semelhante nos grupos HP/NP-TRE (203,80 ± 34,03) e HP/NP-SED (214,43 ± 30,54). Não houve diferença entre estes dois grupos quanto aos parâmetros: captação de glicose, oxidação de glicose e síntese de glicogênio pelo músculo sóleo. Desse modo, pudemos concluir que o treinamento aeróbio não teve impacto sobre a recuperação nutricional, visto que não houve diferenças metabólicas ou somáticas entre animais recuperados em presença ou ausência do treinamento.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Protein malnutrition leads to functional impairment in several organs, which is not fully restored with nutritional recovery. Little is known about the role of oxidative stress in the genesis of these alterations. This study was designed to assess the sensitivity of blood oxidative stress biomarkers to a dietary protein restriction. Male Wistar rats were divided into two groups, according to the diet fed from weaning (21 days) to 60 day old: normal protein (17% protein) and low protein (6% protein). Serum protein, albumin, free fatty acid and liver glycogen and lipids were evaluated to assess the nutritional status. Blood glutathione reductase (GR) and catalase (CAT) activities, plasma total sulfhydryl groups concentration (TSG) as well as plasma thiobarbituric acid reactive substances (TBARs) and reactive carbonyl derivatives (RCD) were measured as biomarkers of the antioxidant system and oxidative damage, respectively. The glucose metabolism in soleus muscle was also evaluated as an index of stress severity imposed to muscular mass by protein malnutrition. No difference was observed in muscle glucose metabolism or plasma RCD concentration between both groups. However, our results showed that the low protein group had higher plasma TBARs (62%) concentration and lower TSG (44%) concentration than control group, indicating increased reactive oxygen species production in low protein group. The enhancement of erythrocyte GR (29%) and CAT (28%) activities in this group also suggest an adaptation to the stress generated by the protein deficiency. Taken together, the results presented here show that the biomarkers used were able to reflect the oxidative stress level induced by this specific protein deficient diet.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)