971 resultados para nutrient structures of seawater


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nutrient concentrations in seawater, and C, N, P, Si and chlorophyll a content in different-sized particulates were measured in Jiaozhou Bay, and C, N, P, Si composition in different-sized fractions of phytoplankton and their ecological responses to nutrient structure of the seawater were studied. Microphytoplankton and nanophytoplankton were dominant in Jiaozhou Bay. High C (16.50-20.97 unol L-1), N (2.46-2.99 mu mol L-1) and low P (0.06-0.12 mu mol L-1), Si (0.18-0.57 mu mol L-1) content, and high N/P (24.7-64.6) and low SUP (4.4-10.8), Si/N (0.06-0.20) ratios were found in all sized groups of particulates. These values reflected the elemental compositions of different-sized fractions of phytoplankton as being an ecological response to the nutrients in the seawater. The ratios deviated significantly from the Redfield values. The nutrient composition of seawater and particulates and their relationship to chlorophyll a showed that phytoplankton growth was possibly limited by Si. Si limitation appears favorable for controlling the ecological equilibrium of Jiaozhou Bay. Different-sized fractions of phytoplankton had different suitability to nutrient structures of the seawater. Among phytoplankton size groups, nanophytoplankton and microphytoplankton growths were more adaptable in eutrophic Jiaozhou Bay, and more competitive for assimilation of Si. This is consistent with their diatom-dominated composition, controlling the biomass and productivity of phytoplankton in Jiaozhou Bay. (c) 2006 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Colony counts on high and low-nutrient agar media incubated at 2 and 20 °C, Acridine Orange Direct Counts and biomasses are reported for sediments of the Sierra Leone Abyssal Plain. All isolates from low-nutrient agars also grew in nutrient-rich seawater broth (100 % SWB). However, a greater proportion of the 2 °C than of the 20 °C isolates grew in 2.5% SWB, containing 125 mg/l peptone and 25 mg/l yeast extract. Only 14 strains or 12.7% of the 2 °C isolates, but none of the 20 °C isolates, grew in 0.25 % SWB. Psychrophilic bacteria with maximum growth temperatures below 12 °C, isolated at 2 °C, were predominant among the cultivable bacteria from the surface layer. They required seawater for growth and belonged mainly to the Gram-negative genera Alteromonas and Vibrio. In contrast to the earlier view that psychrophily is connected with the Gram-negative cell type, it was found that cold-adapted bacteria of the Gram-positive genus Bacillus predominated in the 4 to 6 cm layer. The 20 °C isolates, however, were mostly Gram-positive, mesophilic, not dependent on seawater for growth, not able to utilize organic substrates at 4 °C, and belonged mainly to the genus Bacillus and to the Gram-positive cocci. The majority of the mesophilic bacilli most likely evolved from dormant spores, but not from actively metabolizing cells. It can be concluded that only the strains isolated at 2 °C can be regarded as indigenous to the deep-sea.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present an analysis of extensive nutrient data sets from two river-dominated coastal ecosystems, the northern Adriatic Sea and the northern Gulf of Mexico, demonstrating significant changes in surface nutrient ratios over a period of 30 years. The silicon:nitrogen ratios have decreased, indicating increased potential for silicon limitation. The nitrogen:phosphorus and the silicon:phosphorus ratios have also changed substantially, and the coastal nutrient structures have become more balanced and potentially less limiting for phytoplankton growth. It is likely that net phytoplankton productivity increased under these conditions and was accompanied by increasing bottom water hypoxia and major changes in community species composition. These findings support the hypothesis that increasing coastal eutrophication to date may be associated with stoichiometric nutrient balance, due to increasing potential for silicon limitation and decreasing potential for nitrogen and phosphorus limitation. On a worldwide basis, coastal ecosystems adjacent to rivers influenced by anthropogenic nutrient loads may experience similar alterations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Carbon, nitrogen, phosphorus, silicon composition of cultured two different sized phytoplankton common species of Thalassiosira rotula and Skeletonema costatum from the Jiaozhou Bay were measured. Carbon, nitrogen, phosphorus, silicon contents in cell were. obvious higher in T. rotula than in S. costatum, but the percents of nitrogen, phosphorus, silicon contents in cell dry mass in T. rotula were lower than those in S. costatum. The dry mass concentrations of nitrogen,phosphorus,silicon in S. costatum were much higher than those in T. rotula, particularly silicon, the former was 6.4 times of the latter, showing that S. costatum could more assimilate these elements. Especially, S. costatum had competitive dominance for assimilating silicon, which is beneficial to its becoming a major dominant species in relative short silicon of the Jiaozhou Bay. There were some differences in numerical value of nutrient ratios both laboratory-cultured phytoplankton and different sized suspended particulates (mainly phytoplankton) in the Jiaozhou Bay, which was caused by the changes of environment. High contents of carbon, nitrogon and relative low phosporus,silicon, high molar ratio of nitrogen to phosphorus (far higher than Redfield value) and low ratio of silicon to phosphorus and silicon to nitrogen (far lower than Redfield values) in the two diatoms and different sized suspended particulates were consistent with those in the seawater. Relative short silicon in the seawater and phytoplankton showed that silicon was possibly affectting phytoplankton growth in the Jiaozhou Bay.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Stable isotopes, tritium, radium isotopes, radon, trace elements and nutrients data were collected during two sampling campaigns in the Ubatuba coastal area (south-eastern Brazil) with the aim of investigating submarine groundwater discharge (SGD) in the region. The isotopic composition (delta D, delta(18)O, (3)H) of submarine waters was characterised by significant variability and heavy isotope enrichment. The stable isotopes and tritium data showed good separation of groundwater and seawater groups. The contribution of groundwater in submarine waters varied from a few % to 17%. Spatial distribution of (222)Rn activity concentration in surface seawater revealed changes between 50 and 200 Bq m(-3) which were in opposite relationship with observed salinities. Time series measurements of (222)Rn activity concentration in Flamengo Bay (from 1 to 5 kBq m(-3)), obtained by in situ underwater gamma-spectrometry showed a negative correlation between the (222)Rn activity concentration and tide/salinity. This may be caused by sea level changes as tide effects induce variations of hydraulic gradients, which increase (222)Rn concentration during lower sea level, and opposite, during high tides where the (222)Rn activity concentration is smaller. The estimated SGD fluxes varied during 22-26 November between 8 and 40 cm d(-1), with an average value of 21 cm d(-1) (the unit is cm(3)/cm(2) per day). The radium isotopes and nutrient data showed scattered distributions with offshore distance and salinity. which implies that in a complex coast with many small bays and islands, the area has been influenced by local currents and groundwater-seawater mixing. SGD in the Ubatuba area is fed by coastal contaminated groundwater and re-circulated seawater (with small admixtures of groundwater). which claims for potential environmental concern with implications on the management of freshwater resources in the region. (C) 2007 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ocean acidification has a wide-ranging potential for impacting the physiology and metabolism of zooplankton. Sufficiently elevated CO2 concentrations can alter internal acid-base balance, compromising homeostatic regulation and disrupting internal systems ranging from oxygen transport to ion balance. We assessed feeding and nutrient excretion rates in natural populations of the keystone species Euphausia superba (Antarctic krill) by conducting a CO2 perturbation experiment at ambient and elevated atmospheric CO2 levels in January 2011 along the West Antarctic Peninsula (WAP). Under elevated CO2 conditions (~672 ppm), ingestion rates of krill averaged 78 µg C/individual/d and were 3.5 times higher than krill ingestion rates at ambient, present day CO2 concentrations. Additionally, rates of ammonium, phosphate, and dissolved organic carbon (DOC) excretion by krill were 1.5, 1.5, and 3.0 times higher, respectively, in the high CO2 treatment than at ambient CO2 concentrations. Excretion of urea, however, was ~17% lower in the high CO2 treatment, suggesting differences in catabolic processes of krill between treatments. Activities of key metabolic enzymes, malate dehydrogenase (MDH) and lactate dehydrogenase (LDH), were consistently higher in the high CO2 treatment. The observed shifts in metabolism are consistent with increased physiological costs associated with regulating internal acid-base equilibria. This represents an additional stress that may hamper growth and reproduction, which would negatively impact an already declining krill population along the WAP.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Tara Oceans Expedition (2009-2013) sampled the world oceans on board a 36 m long schooner, collecting environmental data and organisms from viruses to planktonic metazoans for later analyses using modern sequencing and state-of-the-art imaging technologies. Tara Oceans Data are particularly suited to study the genetic, morphological and functional diversity of plankton. The present data set provides continuous measurements of partial pressure of carbon dioxide (pCO2), using a ProOceanus CO2-Pro instrument mounted on the flowthrough system. This automatic sensor is fitted with an equilibrator made of gas permeable silicone membrane and an internal detection loop with a non-dispersive infrared detector of PPSystems SBA-4 CO2 analyzer. A zero-CO2 baseline is provided for the subsequent measurements circulating the internal gas through a CO2 absorption chamber containing soda lime or Ascarite. The frequency of this automatic zero point calibration was set to be 24 hours. All data recorded during zeroing processes were discarded with the 15-minute data after each calibration. The output of CO2-Pro is the mole fraction of CO2 in the measured water and the pCO2 is obtained using the measured total pressure of the internal wet gas. The fugacity of CO2 (fCO2) in the surface seawater, whose difference with the atmospheric CO2 fugacity is proportional to the air-sea CO2 fluxes, is obtained by correcting the pCO2 for non-ideal CO2 gas concentration according to Weiss (1974). The fCO2 computed using CO2-Pro measurements was corrected to the sea surface condition by considering the temperature effect on fCO2 (Takahashi et al., 1993). The surface seawater observations that were initially estimated with a 15 seconds frequency were averaged every 5-min cycle. The performance of CO2-Pro was adjusted by comparing the sensor outputs against the thermodynamic carbonate calculation of pCO2 using the carbonic system constants of Millero et al. (2006) from the determinations of total inorganic carbon (CT ) and total alkalinity (AT ) in discrete samples collected at sea surface. AT was determined using an automated open cell potentiometric titration (Haraldsson et al. 1997). CT was determined with an automated coulometric titration (Johnson et al. 1985; 1987), using the MIDSOMMA system (Mintrop, 2005). fCO2 data are flagged according to the WOCE guidelines following Pierrot et al. (2009) identifying recommended values and questionable measurements giving additional information about the reasons of the questionability.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Acidification of the World's oceans may directly impact reproduction, performance and shell formation of marine calcifying organisms. In addition, since shell production is costly and stress in general draws on an organism's energy budget, shell growth and stability of bivalves should indirectly be affected by environmental stress. The aim of this study was to investigate whether a combination of warming and acidification leads to increased physiological stress (lipofuscin accumulation and mortality) and affects the performance [shell growth, shell breaking force, condition index (Ci)] of young Mytilus edulis and Arctica islandica from the Baltic Sea. We cultured the bivalves in a fully-crossed 2-factorial experimental setup (seawater (sw) pCO2 levels "low", "medium" and "high" for both species, temperature levels 7.5, 10, 16, 20 and 25 °C for M. edulis and 7.5, 10 and 16 °C for A. islandica) for 13 weeks in summer. Mytilus edulis and A. islandica appeared to tolerate wide ranges of sw temperature and pCO2. Lipofuscin accumulation of M. edulis increased with temperature while the Ci decreased, but shell growth of the mussels only sharply decreased while its mortality increased between 20 and 25 °C. In A. islandica, lipofuscin accumulation increased with temperature, whereas the Ci, shell growth and shell breaking force decreased. The pCO2 treatment had only marginal effects on the measured parameters of both bivalve species. Shell growth of both bivalve species was not impaired by under-saturation of the sea water with respect to aragonite and calcite. Furthermore, independently of water temperatures shell breaking force of both species and shell growth of A. islandica remained unaffected by the applied elevated sw pCO2 for several months. Only at the highest temperature (25 °C), growth arrest of M. edulis was recorded at the high sw pCO2 treatment and the Ci of M. edulis was slightly higher at the medium sw pCO2 treatment than at the low and high sw pCO2 treatments. The only effect of elevated sw pCO2 on A. islandica was an increase in lipofuscin accumulation at the high sw pCO2 treatment compared to the medium sw pCO2 treatment. Our results show that, despite this robustness, growth of both M. edulis and A. islandica can be reduced if sw temperatures remain high for several weeks in summer. As large body size constitutes an escape from crab and sea star predation, this can make bivalves presumably more vulnerable to predation with possible negative consequences on population growth. In M. edulis, but not in A. islandica, this effect is amplified by elevated sw pCO2. We follow that combined effects of elevated sw pCO2 and ocean warming might cause shifts in future Western Baltic Sea community structures and ecosystem services; however, only if predators or other interacting species do not suffer as strong from these stressors.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background We have used serial visual analogue scores to demonstrate disturbances of the appetite profile in dialysis patients. This is potentially important as dialysis patients are prone to malnutrition yet have a lower nutrient intake than controls. Appetite disturbance may be influenced by accumulation of appetite inhibitors such as leptin and cholecystokinin (CCK) in dialysis patients. Methods Fasting blood samples were drawn from 43 controls, 50 haemodialysis (HD) and 39 peritoneal dialysis (PD) patients to measure leptin and CCK. Hunger and fullness scores were derived from profiles compiled using hourly visual analogue scores. Nutrient intake was derived from 3 day dietary records. Results Fasting CCK was elevated for PD (6.73 ± 4.42 ng/l vs control 4.99 ± 2.23 ng/l, P < 0.05; vs HD 4.43 ± 2.15 ng/l, P < 0.01). Fasting CCK correlated with the variability of the hunger (r = 0.426, P = 0.01) and fullness (r = 0.52, P = 0.002) scores for PD. There was a notable relationship with the increase in fullness after lunch for PD (r = 0.455, P = 0.006). When well nourished PD patients were compared with their malnourished counterparts, CCK was higher in the malnourished group (P = 0.004). Leptin levels were higher for the dialysis patients than controls (HD and PD, P < 0.001) with pronounced hyperleptinaemia evident in some PD patients. Control leptin levels demonstrated correlation with fullness scores (e.g. peak fullness, r = 0.45, P = 0.007) but the dialysis patients did not. PD nutrient intake (energy and protein intake, r = -0.56, P < 0.0001) demonstrated significant negative correlation with leptin. Conclusion Increased CCK levels appear to influence fullness and hunger perception in PD patients and thus may contribute to malnutrition. Leptin does not appear to affect perceived appetite in dialysis patients but it may influence nutrient intake in PD patients via central feeding centres.