993 resultados para nutrient release
Resumo:
In ago-pastoral systems of the semi-arid West African Sahel, targeted applications of ruminant manure to the cropland is a widespread practice to maintain soil productivity. However, studies exploring the decomposition and mineralisation processes of manure under farmers' conditions are scarce. The present research in south-west Niger was undertaken to examine the role of micro-organisms and meso-fauna on in situ release rates of nitrogen (N), phosphorus (P) and potassium (K) from cattle and sheep-goat manure collected from village corrals during the rainy season. The results show tha (1) macro-organisms played a dominant role in the initial phase of manure decomposition; (2) manure decomposition was faster on crusted than on sandy soils; (3) throughout the study N and P release rates closely followed the dry matter decomposition; (4) during the first 6 weeks after application the K concentration in the manure declined much faster than N or P. At the applied dry matter rate of 18.8 Mg ha^-1, the quantities of N, P and K released from the manure during the rainy season were up to 10-fold larger than the annual nutrient uptake of pearl millet (Pennisetum glaucum L.), the dominant crop in the traditional agro-pastoral systems. The results indicate considerable nutrient losses with the scarce but heavy rainfalls which could be alleviated by smaller rates of manure application. Those, however, would require a more labour intensive system of corralling or manure distribution.
Resumo:
[EN] Zooplankton metabolism in terms of oxygen consumption and ñutrient reléase (ammonia, phosphate) were measiu'ed in the Baltic Sea, a températe área with high envirormiental changes both in space and in time. Plankton of the surface layer were analysed with balance measurements in 4 size classes between 50 and 1000 nm during spring in 1988, 1990 and 1991, in summer 19^8 and 1990 as well. The use of electrón transport system (ETS), and the Glutamate Dehydrogenase (GDH) activity as indicators for respiration and ammonia reléase respectively, enlarged the data density and made a three dimensional resolution available (May 1990, 1991). Data are in the range of the latitudinal dependend magnitude. They reflect slight interannual, more seasonal and regional aspects. Animáis size, temperature, food concentration, and species composition influence the specific rates
Resumo:
A Pseudosamanea guachapele (guachapele), leguminosa arbórea fixadora de nitrogênio, é uma alternativa para plantios florestais mistos nos trópicos. Como são escassas as informações sobre a espécie em plantios mistos de eucalipto em condições edafoclimáticas brasileiras, foi conduzido um experimento no qual objetivou-se avaliar a contribuição da fixação biológica de nitrogênio para a guachapele e a velocidade de decomposição e de liberação de nutrientes de folhas senescentes de eucalipto e guachapele (oriundas dos plantios puros e consorciado). A porcentagem de N derivado da atmosfera (% Ndfa) foi estimada comparando-se a abundância natural de 15N ( 15N, ) nos tecidos da guachapele com a observada nos tecidos do Eucalyptus grandis, espécie não fixadora, ambas com sete anos de idade. A constante de decomposição (k) e a meia-vida (t1/2) de serapilheira foram estimadas utilizando-se o modelo exponencial aplicado aos dados oriundos de coletas de litterbags. A estimativa da %Ndfa para guachapele, em condições de plantio puro, variou de 17 a 36%, enquanto que, em condições de plantio consorciado, foi de 35 a 60 %. A concentração de N nas folhas senescentes estava positivamente relacionada com a taxa de decomposição, sendo essa decrescente da guachapele para o eucalipto. A t1/2 dos resíduos diferiu significativamente (p < 0.05), sendo de 148, 185 e 218 dias para as folhas de guachapele, mistura das duas espécies e eucalipto, respectivamente. A liberação dos nutrientes (principalmente N, K e Mg) das folhas seguiu a mesma ordem da t1/2 devido à qualidade inicial das mesmas. Os resultados indicam que a guachapele pode beneficiar o plantio misto pela adição de N e por meio da intensificação da decomposição da serapilheira.
Resumo:
As novas técnicas propostas para a agricultura na Amazônia incluem sistema de rotação de capoeira enriquecido com árvores leguminosas e transformando a queima da biomassa em cobertura morta sobre o solo. A decomposição e a liberação de nutrientes da cobertura morta foram estudadas usando sacos de liteira com malha fina que continham cinco tratamentos com diferentes espécies de leguminosas em comparação a um tratamento-controle com vegetação natural. As amostras para cada tratamento foram analisadas para conteúdos de C total, N, P, K, Ca, Mg, lignina, celulose e polifenóis solúveis em diferentes tempos de amostragem durante um ano. A razão constante de decomposição variou com a espécie e com o tempo. A perda de massa nos sacos de decomposição foi de 30,1 % para Acacia angustissima, de 32,7 % para Sclerolobium paniculatum, de 33,9 % para Inga edulis e para a vegetação secundária, de 45,2 % para Acacia mangium e de 63,6 % para Clitoria racemosa. Foi observada imobilização de N e P em todos os tratamentos, sendo a mineralização do N negativamente correlacionada com o fenol, razão C/N, razão (lignina + fenol)/N, razão fenol/P e o conteúdo de N nos sacos de liteira. Depois de 362 dias de incubação no campo, 3,3 % de K, 32,2 % de Ca e 22,4 % de Mg permaneceram no material em decomposição. Os resultados evidenciaram que a baixa qualidade mineral e a alta quantidade de carbono orgânico e aplicado como cobertura morta podem limitar a quantidade de energia disponível para os microrganismos resultando em uma competição por nutrientes com as plantas agrícolas.
Resumo:
The study forest regulates nutrient cycles as a supporting ecosystem service mainly via retention in the biosphere and the soil organic layer. How tight the nutrient cycles are depends on environmental conditions. In this chapter, we focus on the roles of (1) deposition from the atmosphere, (2) soil moisture regime, and (3) conversion to pasture in the nutrient cycle. Between 1998 and 2010, there were a seasonal deposition of salpetric acid, an episodic deposition of Ca and Mg from Sahara dusts, and a continuous increase in reactive N inputs related to Amazonian forest fires, the El Niño Southern Oscillation cycle, and the economic development, respectively. Simultaneously, soils became increasingly drier enhancing nutrient release by mineralization. An increasing number of rain storms could considerably increase the export of N and base metals (K, Ca, Mg) via fast surface-near lateral transport in soil. Land-use change from forest to pasture introduces alkaline ashes and grass-derived organic matter. The resulting increases in soil pH and nutrient and substrate supply increase nutrient cycling rates because of enhanced microbial activity.
Resumo:
The market of flowers and ornamentals such as croton (Codiaeum variegatum) and petunia (Petunia×hybrida Vilm.-Andr) have been created new technologies to constantly development, as one of the most promising segments of horticulture. Fertilization providing adequate nutrition and less leaching to the environment is the objective of numerous studies around the world. Therefore, two studies were conducted to evaluate the use of controlled release fertilizer (CRF) on the growth of two ornamental species, and N loss by leaching. The first experiment aim to evaluate sources and rates of CRF and water soluble fertilizer (WSF) on croton growth and nitrogen concentration on drained solution. Results showed that treatments with WSF and low rates of CRF provided higher plants growth, and the amount of N leached was higher for WSF treatments. The second experiment objective to compare plant performance and cost for strategies that potentially provide adequate nutrition during both the production and consumer phases for container-grown Petunia plants. In addition, two experiments were conducted to evaluate nutrient release in sand containers inside of the greenhouse and under controlled temperature conditions without plants. Results showed that during production phase all fertilizer treatments produced high quality plants, and during consumer phase, plants grown with WSF only during the production phase were nutrient-deficient, while plants receiving CRFs were still growing vigorously, especially in a high rate. The release rates of all CRF products were temperature-dependent. In conclusion CRF provided plant growth at the same rate that WSF, with less N leaching and extra cost less than U$0.065 per plant with CRF during production.
Resumo:
For essential elements, such as copper (Cu) and zinc (Zn), the bioavailability in biosolids is important from a nutrient release and a potential contamination perspective. Most ecotoxicity studies are done using metal salts and it has been argued that the bioavailability of metals in biosolids can be different to that of metal salts. We compared the bioavailability of Cu and Zn in biosolids with those of metal salts in the same soils using twelve Australian field trials. Three different measures of bioavailability were assessed: soil solution extraction, CaCl2 extractable fractions and plant uptake. The results showed that bioavailability for Zn was similar in biosolid and salt treatments. For Cu, the results were inconclusive due to strong Cu homeostasis in plants and dissolved organic matter interference in extractable measures. We therefore recommend using isotope dilution methods to assess differences in Cu availability between biosolid and salt treatments.
Resumo:
目前在包膜控释肥料方面的研究热点是采用树脂型包膜材料制备包膜肥料,并且取得了一定的成绩,控释效果比较良好,但由于树脂材料需用大量有机溶剂,给生产成本和工艺都带来了新的问题。本试验针对此问题,选用水性聚氨酯(PU)和水性丙烯酸(PA)作为包膜材料,应用旋转包膜工艺和流化床包膜工艺制备包膜肥料,采用水培法、淋溶法、土培法、电镜观察等方法对其进行释放性能评价,最终确定水性聚氨酯和水性丙烯酸在肥料中应用的效果。结果表明: 以旋转包膜工艺、用水性聚氨酯(PU)为膜材料制备的9种包膜肥料,并做了封闭处理,通过扫描电镜观察都形成了致密连续的控释膜,经评价都具有一定的控释效果,其中CRF-6(水性聚氨酯用量6%,封闭剂用量3%)、CRF-9(水性聚氨酯用量9%,封闭剂用量3%)两种包膜肥料控释性能较优,水培条件下其氮素初期溶出率分别为29.11%和19.48%,钾素初期溶出率分别为33.15%和24.93%。各种评价方法结果表明:同一材料不同包膜量控释效果比较:6%用量优于9%用量,优于3%用量。封闭剂用量在2%时效果相对较好。 以流化床包膜工艺、用水性聚氨酯(PU)和水性丙烯酸(PA)为膜材料制备的15种包膜肥料,经检测FCRF-9(PA:PU=1:2,9%)、FCRF-11(PA:PU=1:1,6%)和FCRF-12(PA:PU=1:1,9%)这3种肥料控释效果最为突出,在水培条件下其氮素初期溶出率分别为12.58%、15.62%和16.02%。材料组合以水性聚氨酯(PU)和水性丙烯酸(PA)以1:2复合包膜最理想。对于同一包膜材料不同用量控释效果顺序:9%用量优于6%用量,优于3%用量。与普通肥料肥料相比,包膜肥料吸湿率大幅下降。 旋转包膜工艺与流化床包膜工艺比较表明:在低用量时,水性包膜材料在流化床包膜工艺与旋转包膜工艺制备肥料控释性能没有差异;在高用量时,流化床包膜工艺比旋转包膜工艺更适合应用于水性高分子材料肥料包膜。
Resumo:
Transient micronutrient enrichment of the surface ocean can enhance phytoplankton growth rates and alter microbial community structure with an ensuing spectrum of biogeochemical feedbacks. Strong phytoplankton responses to micronutrients supplied by volcanic ash have been reported recently. Here we: (i) synthesize findings from these recent studies; (ii) report the results of a new remote sensing study of ash fertilization; and (iii) calculate theoretical bounds of ash-fertilized carbon export. Our synthesis highlights that phytoplankton responses to ash do not always simply mimic that of iron amendment; the exact mechanisms for this are likely biogeochemically important but are not yet well understood. Inherent optical properties of ash-loaded seawater suggest rhyolitic ash biases routine satellite chlorophyll-a estimation upwards by more than an order of magnitude for waters with <0.1 mg chlorophyll-a m-3, and less than a factor of 2 for systems with >0.5 mg chlorophyll-a m-3. For this reason post-ash-deposition chlorophyll-a changes in oligotrophic waters detected via standard Case 1 (open ocean) algorithms should be interpreted with caution. Remote sensing analysis of historic events with a bias less than a factor of 2 provided limited stand-alone evidence for ash-fertilization. Confounding factors were poor coverage, incoherent ash dispersal, and ambiguity ascribing biomass changes to ash supply over other potential drivers. Using current estimates of iron release and carbon export efficiencies, uncertainty bounds of ash-fertilized carbon export for 3 events are presented. Patagonian iron supply to the Southern Ocean from volcanic eruptions is less than that of windblown dust on thousand year timescales but can dominate supply at shorter timescales. Reducing uncertainties in remote sensing of phytoplankton response and nutrient release from ash are avenues for enabling assessment of the oceanic response to large-scale transient nutrient enrichment.
Resumo:
In the course of the ‘Livestock Revolution’, extension and intensification of, among others, ruminant livestock production systems are current phenomena, with all their positive and negative side effects. Manure, one of the inevitable secondary products of livestock rearing, is a valuable source of plant nutrients and its skillful recycling to the soil-plant interface is essential for soil fertility, nutrient - and especially phosphorus - uses efficiency and the preservation or re-establishment of environmentally sustainable farming systems, for which organic farming systems are exemplarily. Against this background, the PhD research project presented here, which was embedded in the DFG-funded Research Training Group 1397 ‘Regulation of soil organic matter and nutrient turnover in organic agriculture ’ investigated possibilities to manipulate the diets of water buffalo (Bubalus bubalis L.) so as to produce manure of desired quality for organic vegetable production, without affecting the productivity of the animals used. Consisting of two major parts, the first study (chapter 2) tested the effects of diets differing in their ratios of carbon (C) to nitrogen (N) and of structural to non-structural carbohydrates on the quality of buffalo manure under subtropical conditions in Sohar, Sultanate of Oman. To this end, two trials were conducted with twelve water buffalo heifers each, using a full Latin Square design. One control and four tests diets were examined during three subsequent 7 day experimental periods preceded each by 21 days adaptation. Diets consisted of varying proportions of Rhodes grass hay, soybean meal, wheat bran, maize, dates, and a commercial concentrate to achieve a (1) high C/N and high NDF (neutral detergent fibre)/SC (soluble carbohydrate) ratio (HH), (2) low C/N and low NDF/SC ratio (LL); (3) high C/N and low NDF/SC ratio (HL) and (4) low C/N and high NDF/SC (LH) ratio. Effects of these diets, which were offered at 1.45 times maintenance requirements of metabolizable energy, and of individual diet characteristics, respectively, on the amount and quality of faeces excreted were determined and statistically analysed. The faeces produced from diets HH and LL were further tested in a companion PhD study (Mr. K. Siegfried) concerning their nutrient release in field experiments with radish and cabbage. The second study (chapter 3) focused on the effects of the above-described experimental diets on the rate of passage of feed particles through the gastrointestinal tract of four randomly chosen animals per treatment. To this end, an oral pulse dose of 683 mg fibre particles per kg live weight marked with Ytterbium (Yb; 14.5 mg Yb g-1 organic matter) was dosed at the start of the 7 day experimental period which followed 21 days of adaptation. During the first two days a sample for Yb determination was kept from each faecal excretion, during days 3 – 7 faecal samples were kept from the first morning and the first evening defecation only. Particle passage was modelled using a one-compartment age-dependent Gamma-2 model. In both studies individual feed intake and faecal excretion were quantified throughout the experimental periods and representative samples of feeds and faeces were subjected to proximate analysis following standard protocols. In the first study the organic matter (OM) intake and excretion of LL and LH buffaloes were significantly lower than of HH and HL animals, respectively. Digestibility of N was highest in LH (88%) and lowest in HH (74%). While NDF digestibility was also highest in LH (85%) it was lowest in LL (78%). Faecal N concentration was positively correlated (P≤0.001) with N intake, and was significantly higher in faeces excreted by LL than by HH animals. Concentrations of fibre and starch in faecal OM were positively affected by the respective dietary concentrations, with NDF being highest in HH (77%) and lowest in LL (63%). The faecal C/N ratio was positively related (P≤0.001) to NDF intake; C/N ratios were 12 and 7 for HH and LL (P≤0.001), while values for HL and LH were 11.5 and 10.6 (P>0.05). The results from the second study showed that dietary N concentration was positively affecting faecal N concentration (P≤0.001), while there was a negative correlation with the faecal concentration of NDF (P≤0.05) and the faecal ratios of NDF/N and C/N (P≤0.001). Particle passage through the mixing compartment was lower (P≤0.05) for HL (0.033 h-1) than for LL (0.043 h-1) animals, while values of 0.034 h-1 and 0.038 h-1 were obtained for groups LH and HH. At 55.4 h, total tract mean retention time was significantly (P≤0.05) lower in group LL that in all other groups where these values varied between 71 h (HH) and 79 h (HL); this was probably due to the high dietary N concentration of diet LL which was negatively correlated with time of first marker appearance in faeces (r= 0.84, P≤0.001), while the dietary C concentration was negatively correlated with particle passage through the mixing compartment (r= 0.57, P≤0.05). The results suggest that manure quality of river buffalo heifers can be considerably influenced by diet composition. Despite the reportedly high fibre digestion capacity of buffalo, digestive processes did not suppress the expression of diet characteristics in the faeces. This is important when aiming at producing a specific manure quality for fertilization purposes in (organic) crop cultivation. Although there was a strong correlation between the ingestion and the faecal excretion of nitrogen, the correlation between diet and faecal C/N ratio was weak. To impact on manure mineralization, the dietary NDF and N concentrations seem to be the key control points, but modulating effects are achieved by the inclusion of starch into the diet. Within the boundaries defined by the animals’ metabolic and (re)productive requirements for energy and nutrients, diet formulation may thus take into account the abiotically and biotically determined manure turnover processes in the soil and the nutrient requirements of the crops to which the manure is applied, so as to increase nutrient use efficiency along the continuum of the feed, the animal, the soil and the crop in (organic) farming systems.
Resumo:
Agriculture in semi-arid and arid regions is constantly gaining importance for the security of the nutrition of humankind because of the rapid population growth. At the same time, especially these regions are more and more endangered by soil degradation, limited resources and extreme climatic conditions. One way to retain soil fertility under these conditions in the long run is to increase the soil organic matter. Thus, a two-year field experiment was conducted to test the efficiency of activated charcoal and quebracho tannin extract as stabilizers of soil organic matter on a sandy soil low in nutrients in Northern Oman. Both activated charcoal and quebracho tannin extract were either fed to goats and after defecation applied to the soil or directly applied to the soil in combination with dried goat manure. Regardless of the application method, both additives reduced decomposition of soil-applied organic matter and thus stabilized and increased soil organic carbon. The nutrient release from goat manure was altered by the application of activated charcoal and quebracho tannin extract as well, however, nutrient release was not always slowed down. While activated charcoal fed to goats, was more effective in stabilising soil organic matter and in reducing nutrient release than mixing it, for quebracho tannin extract the opposite was the case. Moreover, the efficiency of the additives was influenced by the cultivated crop (sweet corn and radish), leading to unexplained interactions. The reduced nutrient release caused by the stabilization of the organic matter might be the reason for the reduced yields for sweet corn caused by the application of manure amended with activated charcoal and quebracho tannin extract. Radish, on the other hand, was only inhibited by the presence of quebracho tannin extract but not by activated charcoal. This might be caused by a possible allelopathic effect of tannins on crops. To understand the mechanisms behind the changes in manure, in the soil, in the mineralisation and the plant development and to resolve detrimental effects, further research as recommended in this dissertation is necessary. Particularly in developing countries poor in resources and capital, feeding charcoal or tannins to animals and using their faeces as manure may be promising to increase soil fertility, sequester carbon and reduce nutrient losses, when yield reductions can be resolved.
Resumo:
Artisanal columbite-tantalite (coltan) mining has had negative effects on the rural economy in the great Lakes region of Africa through labor deficits, degradation and loss of farmland, food insecurity, high cost of living, and reduced traditional export crop production alongside secondary impacts that remotely affect the quality of air, water, soil, plants, animals, and human wellbeing. The situation is multifaceted and calls for a holistic approach for short and long-term mitigation of such negative effects. This study focuses on the effects of mine land restoration on soil microbiological quality in the Gatumba Mining District of western Rwanda. Some coltan mine wastelands were afforested with pine and eucalyptus trees while farmers directly cultivated others due to land scarcity. Farmyard manure (FYM) is the sole fertilizer applied on the wastelands although it is insufficient to achieve the desired crop yields. Despite this, several multi-purpose plants such as Tithonia diversifolia, Markhamia lutea, and Canavalia brasiliensis thrive in the area and could supplement FYM. The potential for these “new” amendments to improve soil microbial properties, particularly in the tantalite mine soils was investigated. The specific objectives of the study were to: (a) evaluate the effects of land use on soil microbial indices of the tantalite mine soils; (b) investigate the restorative effects of organic amendments on a Technosol; and (c) estimate the short-term N and P supply potential of the soil amendments in the soils. Fresh soils (0-20 cm) from an unmined native forest, two mine sites afforested with pine and eucalyptus forests (pine and eucalyptus Technosols), an arable land, and two cultivated Technosols (Kavumu and Kirengo Technosols) were analyzed for the physicochemical properties. Afterwards, a 28-day incubation (22oC) experiment was conducted followed by measurements of mineral N, soil microbial biomass C, N, P, and fungal ergosterol contents using standard methods. This was followed by a 12-week incubation study of the arable soil and the Kavumu Technosol amended with FYM, Canavalia and Tithonia biomass, and Markhamia leaf litter after which soil microbial properties were measured at 2, 8, and 12 weeks of incubation. Finally, two 4-week incubation experiments each were conducted in soils of the six sites to estimate (i) potential mineralizable N using a soil-sand mixture (1:1) amended with Canavalia and goat manure and (ii) P mineralization mixtures (1:1) of soil and anion exchange resins in bicarbonate form amended with Tithonia biomass and goat manure. In study one, afforestation increased soil organic carbon and total N contents in the pine and eucalyptus Technosols by 34-40% and 28-30%, respectively of that in the native forest soil. Consequently, the microbial biomass and activity followed a similar trend where the cultivated Technosols were inferior to the afforested ones. The microbial indices of the mine soils were constrained by soil acidity, dithionite-extractable Al, and low P availability. In study two, the amendments substantially increased C and N mineralization, microbial properties compared with non-amended soils. Canavalia biomass increased CO2 efflux by 340%, net N mineralization by 30-140%, and microbial biomass C and N by 240-600% and 240-380% (P < 0.01), respectively after four weeks of incubation compared with the non-amended soils. Tithonia biomass increased ergosterol content by roughly 240%. The Kavumu Technosol showed a high potential for quick restoration of its soil quality due to its major responses to the measured biological parameters. In study three, Canavalia biomass gave the highest mineralizable N (130 µg g-1 soil, P < 0.01) in the Kavumu Technosol and the lowest in the native forest soil (-20 µg g-1 soil). Conversely, the mineralizable N of goat manure was negative in all soils ranging from -2.5 µg N g-1 to -7.7 µg N g-1 soil except the native forest soil. However, the immobilization of goat manure N in the “cultivated soils” was 30-70% lower than in the “forest soils” signifying an imminent recovery of the amended soils from N immobilization. The mineralization of goat manure P was three-fold that of Tithonia, constituting 61-71% of total P applied. Phosphorus mineralization slightly decreased after four weeks of incubation due to sulfate competition as reflected in a negative correlation, which was steeper in the Tithonia treatment. In conclusion, each amendment used in this research played a unique role in C, N, and P mineralization and contributed substantially to microbial properties in the tantalite mine soils. Interestingly, the “N immobilizers” exhibited potentials for P release and soil organic carbon storage. Consequently, the combined use of the amendments in specific ratios, or co-composting prior to application is recommended to optimize nutrient release, microbial biomass dynamics and soil organic matter accrual. Transport of organic inputs seems more feasible for smallholder farmers who typically manage small field sizes. To reduce acidity in the soils, liming with wood ash was recommended to also improve P availability and enhance soil biological quality, even if it may only be possible on small areas. Further, afforestation with mixed-species of fast-growing eucalyptus and legume or indigenous tree species are suggested to restore tantalite mine wastelands. It is emphasized most of this research was conducted under controlled laboratory conditions, which exclude interaction with environmental variables. Also fine fractions of the amendments were used compared with the usual practice of applying a mixture of predominantly coarser fractions. Therefore, the biological dynamics reported in the studies here may not entirely reflect those of farmers’ field conditions.
Resumo:
La contínua descàrrega de nutrients, sobretot fosfats i nitrogen, és la major causa d'eutrofització dels ecosistemes aquàtics. Els sistemes de tractament basats en aiguamolls construïts s'han emprat per reduir ells nivells de nitrogen a l'aigua com a alternativa de baix cost als mètodes de depuració convencionals. L'eliminació del nitrogen a aquests sistemes depèn en bona part de la vegetació, i l'alternança de condicions aeròbiques i anaeròbiques per promoure els processos de nitrificació i desnitrificació. En aquest treball hem volgut investigar les activitats microbianes de nitrificació i desnitrificació en relació a dues espècies de plantes macròfites en un sistema d'aiguamolls de tractament de flux superficial (FS-SAC), dissenyat per minimitzar l'impacte de l'alliberament d'aigua carregada de nutrients a la reserva natural dels Aiguamolls de l'Empordà (Girona, Espanya).
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)