956 resultados para nutrient consumption ratio
Resumo:
Little is known concerning the effect of CO2 on phytoplankton ecophysiological processes under nutrient and trace element-limited conditions, because most CO2 manipulation experiments have been conducted under elements-replete conditions. To investigate the effects of CO2 and iron availability on phytoplankton ecophysiology, we conducted an experiment in September 2009 using a phytoplankton community in the iron limited, high-nutrient, low-chlorophyll (HNLC) region of the Bering Sea basin . Carbonate chemistry was controlled by the bubbling of the several levels of CO2 concentration (180, 380, 600, and 1000 ppm) controlled air, and two iron conditions were established, one with and one without the addition of inorganic iron. We demonstrated that in the iron-limited control conditions, the specific growth rate and the maximum photochemical quantum efficiency (Fv/Fm) of photosystem (PS) II decreased with increasing CO2 levels, suggesting a further decrease in iron bioavailability under the high-CO2 conditions. In addition, biogenic silica to particulate nitrogen and biogenic silica to particulate organic carbon ratios increased from 2.65 to 3.75 and 0.39 to 0.50, respectively, with an increase in the CO2 level in the iron-limited controls. By contrast, the specific growth rate, Fv/Fm values and elemental compositions in the iron-added treatments did not change in response to the CO2 variations, indicating that the addition of iron canceled out the effect of the modulation of iron bioavailability due to the change in carbonate chemistry. Our results suggest that high-CO2 conditions can alter the biogeochemical cycling of nutrients through decreasing iron bioavailability in the iron-limited HNLC regions in the future.
Resumo:
The relative influence of race, income, education, and Food Stamp Program participation/nonparticipation on the food and nutrient intake of 102 fecund women ages 18-45 years in a Florida urban clinic population was assessed using the technique of multiple regression analysis. Study subgroups were defined by race and Food Stamp Program participation status. Education was found to have the greatest influence on food and nutrient intake. Race was the next most influential factor followed in order by Food Stamp Program participation and income. The combined effect of the four independent variables explained no more than 19 percent of the variance for any of the food and nutrient intake variables. This would indicate that a more complex model of influences is needed if variations in food and nutrient intake are to be fully explained.^ A socioeconomic questionnaire was administered to investigate other factors of influence. The influence of the mother, frequency and type of restaurant dining, and perceptions of food intake and weight were found to be factors deserving further study.^ Dietary data were collected using the 24-hour recall and food frequency checklist. Descriptive dietary findings indicated that iron and calcium were nutrients where adequacy was of concern for all study subgroups. White Food Stamp Program participants had the greatest number of mean nutrient intake values falling below the 1980 Recommended Dietary Allowances (RDAs). When Food Stamp Program participants were contrasted to nonparticipants, mean intakes of six nutrients (kilocalories, calcium, iron, vitamin A, thiamin, and riboflavin) were below the 1980 RDA compared to five mean nutrient intakes (kilocalories, calcium, iron, thiamin and riboflavin) for the nonparticipants. Use of the Index of Nutritional Quality (INQ), however, revealed that the quality of the diet of Food Stamp Program participants per 1000 kilocalories was adequate with exception of calcium and iron. Intakes of these nutrients were also not adequate on a 1000 kilocalorie basis for the nonparticipant group. When mean nutrient intakes of the groups were compared using Student's t-test oleicacid intake was the only significant difference found. Being a nonparticipant in the Food Stamp Program was found to be associated with more frequent consumption of cookies, sweet rolls, doughnuts, and honey. The findings of this study contradict the negative image of the Food Stamp Program participant and emphasize the importance of education. ^
Resumo:
The aims of this study were to determine food and nutrient intakes and the socio-economic factors influencing food and nutrient intakes of rural Thai-Muslim women in the third trimester of pregnancy. The study was conducted in Pattani province, Thailand, where 166 women were interviewed between 32 and 40 weeks gestation. A questionnaire. including a Food Frequency Questionnaire was used. Data on food items were compiled into the five basic Thai food groups, and food intakes were computed into macro and micro-nutrients. Mean weight intake of each of the five groups was below the recommended level for pregnant Thai women. Mean intake of niacin, vitamin A (RE) and vitamin C were above the recommended Thai level. Thiamin, calcium. phosphorus and iron intakes were lower than 50% of recommended levels. Intakes of the five food groups were not associated with socio-economic status, although total non-haem iron intake was associated with level of education. Under-consumption of food and nutrients among pregnant women in the study area was due to poor education. poverty and food availability. Integrated strategies should be considered to promote increased intakes to meet nutrient recommendations.
Resumo:
In "high nitrate, low chlorophyll" (HNLC) ocean regions, iron has been typically regarded as the limiting factor for phytoplankton production. This "iron hypothesis" needs to be tested in various oceanic environments to understand the role of iron in marine biological and biogeochemical processes. In this paper, three in vitro iron enrichment experiments were performed in Prydz Bay and at the Polar Front north of the Ross Sea, to study the role of iron on phytoplankton production. At the Polar Front of Ross Sea, iron addition significantly (P < 0.05, Student's t-test) stimulated phytoplankton growth. In Prydz Bay, however, both the iron treatments and the controls showed rapid phytoplankton growth, and no significant effect (P > 0.05, Student's t-test) as a consequence of iron addition was observed. These results confirmed the limiting role of iron in the Ross Sea and indicated that iron was not the primary factor limiting phytoplankton growth in Prydz Bay. Because the light environment for phytoplankton was enhanced in experimental bottles, light was assumed to be responsible for the rapid growth of phytoplankton in all treatments and to be the limiting factor controlling field phytoplankton growth in Prydz Bay. During the incubation experiments, nutrient consumption ratios also changed with the physiological status and the growth phases of phytoplankton cells. When phytoplankton growth was stimulated by iron addition, N was the first and Si was the last nutrient which absorption enhanced. The Si/N and Si/P consumption ratios of phytoplankton in the stationary and decay phases were significantly higher than those of rapidly growing phytoplankton. These findings were helpful for studies of the marine ecosystem and biogeochemistry in Prydz Bay, and were also valuable for biogeochemical studies of carbon and nutrients in various marine environments.
Valor nutricional do milho termicamente processado, usado na ração pré-inicial para frangos de corte
Resumo:
Foram conduzidos um ensaio de metabolismo para determinar o valor nutricional do milho termicamente processado (MP) e não-processado (MNP) e outro de desempenho para comparar o uso desses alimentos em dietas pré-iniciais para frangos de corte. Não foram observadas diferenças entre a digestibilidade da matéria seca (MS), do extrato etéreo, da proteína bruta e do amido e valores de energia metabolizável aparente dos tipos de milho avaliados. A energia metabolizável aparente corrigida do MP (3.537kcal/kg de MS) foi maior (P<0,05) que a determinada para o MNP (3.411kcal/kg de MS). No ensaio de desempenho, os tratamentos foram: T1- dieta formulada com MNP; T2 - dieta formulada com MP; e T3 - dieta T1, com substituição isométrica do MNP por MP. Na primeira semana, as aves alimentadas com MP (T2) apresentaram maior consumo (P<0,05) e pior conversão (P<0,05) em relação às alimentadas com MNP (T1). A substituição isométrica do MNP por MP não influenciou no desempenho das aves. No período de 1 a 42 dias, os tratamentos não influenciaram o desempenho dos frangos.
Resumo:
A complex study of influence of various environmental factors on rates of oxygen (M_O2 ), ammonium (M_NH4), and phosphate (M_PO4) metabolism in Ahnfeltia tobuchiensis has been carried out in situ in the Izmena Bay of the Kunashir Island. The following environmental factors have been included into the investigation: photosynthetically active radiation (PAR); ammonium (NH4); phosphate (PO4); and contents of carbon (C), nitrogen (N), phosphorus (P), and chlorophyll a (Chl) in tissue. Population of agar-containing seaweed A. tobuchiensis forms a layer with thickness up to 0.5 m, which occupies about 23.3 km**2; biomass is equal to 125000 tons. Quantitative assessment of organic matter production and nutrient consumption during oxygen metabolism has been carried out for the whole population. It has been shown that daily oxygen metabolism depends on PAR intensity, concentrations of PO4 and NH4 in seawater, and contents of N and P in tissues (r**2=0.78, p<0.001). Average daily NH4 consumption is 0.21 µmol/g of dry weight/hour and depends on NH4 and O2 concentrations in seawater and on ? and Chl a contents in algal tissues (r**2=0.64, p<0.001). Average daily PO4 consumption is 0.01 µmol/g of dry weight/hour and depends on NH4 concentrations in seawater and on P contents in algal tissues (r**2=0.40, p<0.001).
Resumo:
Of all the costs associated with the operation and maintenance of wastewater treatment plants (WWTPs), those associated with energy use tend to be the most significant. From this point of view, it is hence logical that energy efficiency and saving strategies should be one of the current focuses of debate amongst those involved with the management of WWTPs. The present study's objective is to determine the correlation between size and energy consumption for a WWTP. To this end, 90 WWTPs currently in service were analysed and their energetic impact quantified in terms of kWh/m3 of water treated. The results obtained demonstrate that energy consumption ratio increases as the size of WWTPs decreases, either in terms of treatment volume or population equivalent served.
Resumo:
The objective of this paper is to combine the antenna downtilt selection with the cell size selection in order to reduce the overall radio frequency (RF) transmission power in the homogeneous High-Speed Packet Downlink (HSDPA) cellular radio access network (RAN). The analysis is based on the concept of small cells deployment. The energy consumption ratio (ECR) and the energy reduction gain (ERG) of the cellular RAN are calculated for different antenna tilts when the cell size is being reduced for a given user density and service area. The results have shown that a suitable antenna tilt and the RF power setting can achieve an overall energy reduction of up to 82.56%. Equally, our results demonstrate that a small cell deployment can considerably reduce the overall energy consumption of a cellular network.
Resumo:
This paper presents the results of the implementation of a self-consumption maximization strategy tested in a real-scale Vanadium Redox Flow Battery (VRFB) (5 kW, 60 kWh) and Building Integrated Photovoltaics (BIPV) demonstrator (6.74 kWp). The tested energy management strategy aims to maximize the consumption of energy generated by a BIPV system through the usage of a battery. Whenever possible, the residual load is either stored in the battery to be used later or is supplied by the energy stored previously. The strategy was tested over seven days in a real-scale VRF battery to assess the validity of this battery to implement BIPV-focused energy management strategies. The results show that it was possible to obtain a self-consumption ratio of 100.0%, and that 75.6% of the energy consumed was provided by PV power. The VRFB was able to perform the strategy, although it was noticed that the available power (either to charge or discharge) varied with the state of charge.
Resumo:
This is the Stillwaters monitoring programme. Summary results 2001 and 2002 from the Environment Agency North West. Until January 2001 the South Area Stillwaters Sampling Programme consisted of a rolling programme where five to six stillwaters were sampled three times a year (spring, summer and autumn). However, this method was not yielding the water quality information required for long term monitoring. Local weather conditions influence short-term water quality events, e.g. algal blooms, nutrient consumption, stratification, super-saturation etc, so results from one day sampling could only be regarded as individual ‘spot’ samples. Therefore year-on-year comparisons could not be made. It was decided that long-term water quality monitoring of the stillwaters would benefit more from sampling nutrient abundance over winter months. This would give an insight into the carry-over of nutrients available for algal growth the following year and so year-on-year productivity could be assessed. Survey results shown in this report were from: The Mere, Rostherne Mere, Melchett Mere, Tabley Mere, Tatton Mere, Hatchmere, Oak Mere, Black Lake, Chapel Mere, Bar Mere, Oss Mere, Marbury Big Mere, Comber Mere and Betley Mere.
Resumo:
Progress in microbiology has always been driven by technological advances, ever since Antonie van Leeuwenhoek discovered bacteria by making an improved compound microscope. However, until very recently we have not been able to identify microbes and record their mostly invisible activities, such as nutrient consumption or toxin production on the level of the single cell, not even in the laboratory. This is now changing with the rapid rise of exciting new technologies for single-cell microbiology (1, 2), which enable microbiologists to do what plant and animal ecologists have been doing for a long time: observe who does what, when, where, and next to whom. Single cells taken from the environment can be identified and even their genomes sequenced. Ex situ, their size, elemental, and biochemical composition, as well as other characteristics can be measured with high-throughput and cells sorted accordingly. Even better, individual microbes can be observed in situ with a range of novel microscopic and spectroscopic methods, enabling localization, identification, or functional characterization of cells in a natural sample, combined with detecting uptake of labeled compounds. Alternatively, they can be placed into fabricated microfluidic environments, where they can be positioned, exposed to stimuli, monitored, and their interactions controlled “in microfluido.” By introducing genetically engineered reporter cells into a fabricated landscape or a microcosm taken from nature, their reproductive success or activity can be followed, or their sensing of their local environment recorded.
Resumo:
Toxin production in marine microalgae was previously shown to be tightly coupled with cellular stoichiometry. The highest values of cellular toxin are in fact mainly associated with a high carbon to nutrient cellular ratio. In particular, the cellular accumulation of C-rich toxins (i.e., with C:N > 6.6) can be stimulated by both N and P deficiency. Dinoflagellates are the main producers of C-rich toxins and may represent a serious threat for human health and the marine ecosystem. As such, the development of a numerical model able to predict how toxin production is stimulated by nutrient supply/deficiency is of primary utility for both scientific and management purposes. In this work we have developed a mechanistic model describing the stoichiometric regulation of C-rich toxins in marine dinoflagellates. To this purpose, a new formulation describing toxin production and fate was embedded in the European Regional Seas Ecosystem Model (ERSEM), here simplified to describe a monospecific batch culture. Toxin production was assumed to be composed by two distinct additive terms; the first is a constant fraction of algal production and is assumed to take place at any physiological conditions. The second term is assumed to be dependent on algal biomass and to be stimulated by internal nutrient deficiency. By using these assumptions, the model reproduced the concentrations and temporal evolution of toxins observed in cultures of Ostreopsis cf. ovata, a benthic/epiphytic dinoflagellate producing C-rich toxins named ovatoxins. The analysis of simulations and their comparison with experimental data provided a conceptual model linking toxin production and nutritional status in this species. The model was also qualitatively validated by using independent literature data, and the results indicate that our formulation can be also used to simulate toxin dynamics in other dinoflagellates. Our model represents an important step towards the simulation and prediction of marine algal toxicity.
Resumo:
A partial differential equation model is developed to understand the effect that nutrient and acidosis have on the distribution of proliferating and quiescent cells and dead cell material (necrotic and apopotic) within a multicellular tumour spheroid. The rates of cell quiescence and necrosis depend upon the local nutrient and acid concentrations and quiescent cells are assumed to consume less nutrient and produce less acid than proliferating cells. Analysis of the differences in nutrient consumption and acid production by quiescent and proliferating cells shows low nutrient levels do not necessarily lead to increased acid concentration via anaerobic metabolism. Rather, it is the balance between proliferating and quiescent cells within the tumour which is important; decreased nutrient levels lead to more quiescent cells, which produce less acid than proliferating cells. We examine this effect via a sensitivity analysis which also includes a quantification of the effect that nutrient and acid concentrations have on the rates of cell quiescence and necrosis.
Resumo:
Verdelhan (2009) mostra que desejando-se explicar o comporta- mento do prêmio de risco nos mercados de títulos estrangeiros usando- se o modelo de formação externa de hábitos proposto por Campbell e Cochrane (1999) será necessário especi car o retorno livre de risco de equilíbrio de maneira pró-cíclica. Mostramos que esta especi cação só é possível sobre parâmetros de calibração implausíveis. Ainda no processo de calibração, para a maioria dos parâmetros razoáveis, a razão preço-consumo diverge. Entretanto, adotando a sugestão pro- posta por Verdelhan (2009) - de xar a função sensibilidade (st) no seu valor de steady-state durante a calibração e liberá-la apenas du- rante a simulação dos dados para se garantir taxas livre de risco pró- cíclicas - conseguimos encontrar um valor nito e bem comportado para a razão preço-consumo de equilíbrio e replicar o foward premium anom- aly. Desconsiderando possíveis inconsistências deste procedimento, so- bre retornos livres de risco pró-cíclicos, conforme sugerido por Wachter (2006), o modelo utilizado gera curvas de yields reais decrescentes na maturidade, independentemente do estado da economia - resultado que se opõe à literatura subjacente e aos dados reais sobre yields.
Resumo:
Verdelhan (2009) shows that if one is to explain the foreign exchange forward premium behavior using Campbell and Cochrane (1999)’s habit formation model one must specify it in such a way to generate pro-cyclical short term risk free rates. At the calibration procedure, we show that this is only possible in Campbell and Cochrane’s framework under implausible parameters specifications given that the price-consumption ratio diverges in almost all parameters sets. We, then, adopt Verdelhan’s shortcut of fixing the sensivity function λ(st) at its steady state level to attain a finite value for the price-consumption ratio and release it in the simulation stage to ensure pro-cyclical risk free rates. Beyond the potential inconsistencies that such procedure may generate, as suggested by Wachter (2006), with procyclical risk free rates the model generates a downward sloped real yield curve, which is at odds with the data.