973 resultados para numerical studies


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fire safety of light gauge cold-formed steel frame (LSF) wall systems is significant to the build-ing design. Gypsum plasterboard is widely used as a fire safety material in the building industry. It contains gypsum (CaSO4.2H2O), Calcium Carbonate (CaCO3) and most importantly free and chemically bound water in its crystal structure. The dehydration of the gypsum and the decomposition of Calcium Carbonate absorb heat, which gives the gypsum plasterboard fire resistant qualities. Recently a new composite panel system was developed, where a thin insulation layer was used externally between two plasterboards to improve the fire performance of LSF walls. In this research, finite element thermal models of both the traditional LSF wall panels with cavity insulation and the new LSF composite wall panels were developed to simulate their thermal behaviour under standard and realistic design fire conditions. Suitable thermal properties of gypsum plaster-board, insulation materials and steel were used. The developed models were then validated by comparing their results with fire test results. This paper presents the details of the developed finite element models of non-load bearing LSF wall panels and the thermal analysis results. It has shown that finite element models can be used to simulate the thermal behaviour of LSF walls with varying configurations of insulations and plasterboards. The results show that the use of cavity insulation was detrimental to the fire rating of LSF walls while the use of external insulation offered superior thermal protection. Effects of real fire conditions are also presented.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Gypsum plasterboards are commonly used as a fire safety material in the building industry. Many research studies have been undertaken to investigate the thermal behaviour of plasterboards under standard fire conditions. However, there are many discrepancies in relation to the basic thermal properties of plasterboards while simple equations are not available to predict the ambient surface time–temperature profiles of gypsum plasterboard panels that can be used in simulating the behaviour and strength of steel studs or joists in load bearing LSF wall and floor systems. In this research, suitable thermal properties of plasterboards were proposed based on a series of tests and available results from past research. Finite element models of gypsum plasterboard panels were then developed to simulate their thermal behaviour under standard fire conditions. The accuracy of the proposed thermal properties and the finite element models was validated by comparing the numerical results with available fire test results of plasterboard panels. This paper presents the details of the finite element models of plasterboard panels, the thermal analysis results from finite element analyses under standard fire conditions and their comparisons with experimental results

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In recent times, light gauge steel frame (LSF) wall systems are increasingly used in the building industry. They are usually made of cold-formed and thin-walled steel studs that are fire-protected by two layers of plasterboard on both sides. A composite LSF wall panel system was developed recently, where an insulation layer was used externally between the two plasterboards to improve the fire performance of LSF wall panels. In this research, finite element thermal models of the new composite panels were developed using a finite element program, SAFIR, to simulate their thermal performance under both standard and Eurocode design fire curves. Suitable apparent thermal properties of both the gypsum plasterboard and insulation materials were proposed and used in the numerical models. The developed models were then validated by comparing their results with available standard fire test results of composite panels. This paper presents the details of the finite element models of composite panels, the thermal analysis results in the form of time-temperature profiles under standard and Eurocode design fire curves and their comparisons with fire test results. Effects of using rockwool, glass fibre and cellulose fibre insulations with varying thickness and density were also investigated, and the results are presented in this paper. The results show that the use of composite panels in LSF wall systems will improve their fire rating, and that Eurocode design fires are likely to cause severe damage to LSF walls than standard fires.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents the details of numerical studies on the shear behaviour and strength of lipped channel beams (LCBs) with stiffened web openings. Over the last couple of decades, cold-formed steel beams have been used extensively in residential, industrial and commercial buildings as primary load bearing structural components. Their shear strengths are considerably reduced when web openings are included for the purpose of locating building services. Our research has shown that shear strengths of LCBs were reduced by up to 70% due to the inclusion of web openings. Hence there is a need to improve the shear strengths of LCBs with web openings. A cost effective way to improve the detrimental effects of a large web opening is to attach appropriate stiffeners around the web openings in order to restore the original shear strength and stiffness of LCBs. Hence numerical studies were undertaken to investigate the shear strengths of LCBs with stiffened web openings. In this research, finite element models of LCBs with stiffened web openings in shear were developed to simulate the shear behaviour and strength of LCBs. Various stiffening methods using plate and LCB stud stiffeners attached to LCBs using screw-fastening were attempted. The developed models were then validated by comparing their results with experimental results and used in parametric studies. Both finite element analysis and experimental results showed that the stiffening arrangements recommended by past re-search for cold-formed steel channel beams are not adequate to restore the shear strengths of LCBs with web openings. Therefore new stiffener arrangements were proposed for LCBs with web openings based on experimental and finite element analysis results. This paper presents the details of finite element models and analyses used in this research and the results including the recommended stiffener arrangements.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fire safety of light gauge steel frame (LSF) stud walls is important in the design of buildings. Currently LSF walls are increasingly used in the building industry, and are usually made of cold-formed and thin-walled steel studs that are fire-protected by two layers of plasterboard on both sides. Many experimental and numerical studies have been undertaken to investigate the fire performance of load bearing LSF walls under standard fire conditions. However, the standard time-temperature curve does not represent the fire load present in typical residential and commercial buildings that include considerable amount of thermoplastic materials. Real building fires are unlikely to follow a standard time-temperature curve. However, only limited research has been undertaken to investigate the fire performance of load bearing LSF walls under realistic design fire conditions. Therefore in this research, finite element thermal models of the traditional LSF wall panels without cavity insulation and the new LSF composite wall panels were developed to simulate their fire performance under recently developed realistic design fire curves. Suitable thermal properties were proposed for plasterboards and insulations based on laboratory tests and literature review. The developed models were then validated by comparing their thermal performance results with available results from realistic design fire tests, and were later used in parametric studies. This paper presents the details of the developed finite element thermal models of load bearing LSF wall panels under realistic design fire time-temperature curves and the re-sults. It shows that finite element thermal models can be used to predict the fire performance of load bearing LSF walls with varying configurations of insulations and plasterboards under realistic design fires. Failure times of load bearing LSF walls were also predicted based on the results from finite element thermal analyses.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cold–formed Light gauge Steel Frame (LSF) wall systems are increasingly used in low-rise and multi-storey buildings and hence their fire safety has become important in the design of buildings. A composite LSF wall panel system was developed recently, where a thin insulation was sandwiched between two plasterboards to improve the fire performance of LSF walls. Many experimental and numerical studies have been undertaken to investigate the fire performance of non-load bearing LSF wall under standard conditions. However, only limited research has been undertaken to investigate the fire performance of load bearing LSF walls under standard and realistic design fire conditions. Therefore in this research, finite element thermal models of both the conventional load bearing LSF wall panels with cavity insulation and the innovative LSF composite wall panel were developed to simulate their thermal behaviour under standard and realistic design fire conditions. Suitable thermal properties were proposed for plasterboards and insulations based on laboratory tests and available literature. The developed models were then validated by comparing their results with available fire test results of load bearing LSF wall. This paper presents the details of the developed finite element models of load bearing LSF wall panels and the thermal analysis results. It shows that finite element models can be used to simulate the thermal behaviour of load bearing LSF walls with varying configurations of insulations and plasterboards. Failure times of load bearing LSF walls were also predicted based on the results from finite element thermal analyses. Finite element analysis results show that the use of cavity insulation was detrimental to the fire rating of LSF walls while the use of external insulation offered superior thermal protection to them. Effects of realistic design fire conditions are also presented in this paper.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

LiteSteel beam (LSB) is a cold-formed steel hollow flange channel section produced using a patented manufacturing process involving simultaneous cold-forming and dual electric resistance welding. It is commonly used as floor joists and bearers in residential, industrial and commercial buildings. Design of the LSB is governed by the Australian cold-formed steel structures code, AS/NZS 4600. Due to the geometry of the LSB, as well as its unique residual stress characteristics and initial geometric imperfections resultant of manufacturing processes, currently available design equations for common cold-formed sections are not directly applicable to the LSB. Many research studies have been carried out to evaluate the behaviour and design of LSBs subject to pure bending actions and predominant shear actions. To date, however, no investigation has been conducted into the strength of LSB sections under combined bending and shear actions. Hence experimental and numerical studies were conducted to assess the combined bending and shear behaviour of LSBs. Finite element models of LSBs were developed to simulate their combined bending and shear behaviour and strength of LSBs. They were then validated by comparing the results with available experimental test results and used in a detailed parametric study. The results from experimental and finite element analyses were compared with current AS/NZS 4600 and AS 4100 design rules. Both experimental and numerical studies show that the AS/NZS 4600 design rule based on circular interaction equation is conservative in predicting the combined bending and shear capacities of LSBs. This paper presents the details of the numerical studies of LSBs and the results. In response to the inadequacies of current approaches to designing LSBs for combined bending and shear, two lower bound design equations are proposed in this paper.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cold-formed steel sections are commonly used in low-rise commercial and residential buildings. During fire events, cold-formed steel structural elements in these buildings are exposed to elevated temperatures. Hence after such events there is a need to determine the residual strength of these structural elements. However, only limited information is available in relation to the residual strength of fire exposed cold-formed steel members. This research is aimed at investigating the residual distortional buckling capacities of fire exposed cold-formed steel lipped channel sections. A series of compression tests of fire exposed, short lipped channel columns made of varying steel grades and thicknesses was undertaken in this research. Test columns were exposed to different elevated temperatures up to 800 oC. They were then allowed to cool down at ambient temperature before they were tested to failure. Suitable finite element models of tested columns were also developed and validated using test results. The residual compression capacities of tested columns were predicted using the ambient temperature cold-formed steel design rules (AS/NZS 4600, AISI S100 and Direct Strength Method). Post-fire mechanical properties obtained from a previous study were used in this study. Comparison of results showed that ambient temperature design rules for compression members can be used to predict the residual compression capacities of fire exposed short or laterally restrained cold-formed steel columns provided the maximum temperature experienced by the columns can be estimated after a fire event. Such residual capacity assessments will allow structural and fire engineers to make an accurate prediction of the safety of buildings after fire events. This paper presents the details of these experimental and numerical studies and the results.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Strengthening of metallic structures using carbon fibre reinforced polymer (CFRP) has become a smart strengthening option over the conventional strengthening method. Transverse impact loading due to accidental vehicular collision can lead to the failure of existing steel hollow tubular columns. However, knowledge is very limited on the behaviour of CFRP strengthened steel members under dynamic impact loading condition. This paper deals with the numerical simulation of CFRP strengthened square hollow section (SHS) steel columns under transverse impact loading to predict the behaviour and failure modes. The transverse impact loading is simulated using finite element (FE) analysis based on numerical approach. The accuracy of the FE modelling is ensured by comparing the predicted results with available experimental tests. The effects of impact velocity, impact mass, support condition, axial loading and CFRP thickness are examined through detail parametric study. The impact simulation results indicate that the strengthening technique shows an improved impact resistance capacity by reducing lateral displacement of the strengthened column about 58% compared to the bare steel column. Axial loading plays an important role on the failure behaviour of tubular column.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A numerical study on columnar-to-equiaxed transition (CET) during directional solidification of binary alloys is presented using a macroscopic solidification model. The position of CET is predicted numerically using a critical cooling rate criterion reported in literature. The macroscopic solidification model takes into account movement of solid phase due to buoyancy, and drag effect on the moving solid phase because of fluid motion. The model is applied to simulate the solidification process for binary alloys (Sn-Pb) and to estimate solidification parameters such as position of the liquidus, velocity of the liquidus isotherm, temperature gradient ahead of the liquidus, and cooling rate at the liquidus. Solidification phenomena under two cooling configurations are studied: one without melt convection and the other involvin thermosolutal convection. The numerically predicted positions of CET compare well with those of experiments reported in literature. Melt convection results in higher cooling rate, higher liquidus isotherm velocities, and stimulation of occurrence of CET in comparison to the nonconvecting case. The movement of solid phase aids further the process of CET. With a fixed solid phase, the occurrence of CET based on the same critical cooling rate is delayed and it occurs at a greater distance from the chill.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fire resistance of cold-formed light gauge steel frame (LSF) wall systems is enhanced by lining them with single or multiple layers of wall boards with varying thermal properties. These wall boards are gypsum plasterboards or Magnesium Oxide (MgO) boards produced by different manufacturers. Thermal properties of these boards appear to show considerable variations and this can lead to varying fire resistance levels (FRL) for their wall systems. Currently FRLs of wall systems are determined using full scale fire tests, but they are time consuming and expensive. Recent research studies on the fire performance of LSF wall systems have used finite element studies to overcome this problem, but they were developed based on 1-D and 2-D finite element platform capable of performing either heat transfer or structural analysis separately. Hence in this research a 3-D finite element model was developed first for LSF walls lined with gypsum plasterboard and cavity insulation materials. Accurate thermal properties of these boards are essential for finite element modelling, and thus they were measured at both ambient and elevated temperatures. This experimental study included specific heat, relative density and thermal conductivity of boards. The developed 3-D finite element model was then validated using the available fire tests results of LSF walls lined with gypsum plasterboard, and is being used to investigate the fire performance of different LSF wall configurations. The tested MgO board exhibited significant variations in their thermal properties in comparison to gypsum plasterboards with about 50% loss of its initial mass at about 500 ºC compared to 16% for gypsum plasterboards. Hence the FRL of MgO board lined LSF wall systems is likely to be significantly reduced. This paper presents the details of this research study on the fire performance of LSF wall systems lined with gypsum plasterboard and MgO board including the developed 3-D finite element models, thermal property tests and the results.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The durability of carbon fibre reinforced polymer (CFRP) strengthened steel circular hollow section (CHS) members has now become a real challenge to researchers. In addition, various parameters that may affect the durability of such members have not been revealed yet. This paper presents brief experimental results and the first finite element (FE) approach of CFRP strengthened steel CHS beams conditioned in simulated sea water, along with an accelerated corrosion environment at ambient (24 OC ± 4 OC) and 50 OC temperatures. The beams were loaded to failure under four-point bending. It was found that the strength and stiffness reduced significantly after conditioning in an accelerated corrosion environment. Numerical simulation is implemented using the ABAQUS static general approach. A cohesive element was utilised to model the interface element and an 8-node quadrilateral in-plane general-purpose continuum shell was used to model CFRP elements. A mixed mode cohesive law was deployed for all the three components of stresses in the proposed FE approach, which were one normal component and two shear components. The validity of the FE models was ascertained by comparing the ultimate load and load vs deflection response from experimental results. A range of parametric studies were conducted to investigate the effects of bond length, adhesive types, thickness and diameter of tubes. The results of parametric studies indicated that the adhesive with high tensile modulus performed better and durability design factors varied from section to section.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We explore here the acceleration of convergence of iterative methods for the solution of a class of quasilinear and linear algebraic equations. The specific systems are the finite difference form of the Navier-Stokes equations and the energy equation for recirculating flows. The acceleration procedures considered are: the successive over relaxation scheme; several implicit methods; and a second-order procedure. A new implicit method—the alternating direction line iterative method—is proposed in this paper. The method combines the advantages of the line successive over relaxation and alternating direction implicit methods. The various methods are tested for their computational economy and accuracy on a typical recirculating flow situation. The numerical experiments show that the alternating direction line iterative method is the most economical method of solving the Navier-Stokes equations for all Reynolds numbers in the laminar regime. The usual ADI method is shown to be not so attractive for large Reynolds numbers because of the loss of diagonal dominance. This loss can however be restored by a suitable choice of the relaxation parameter, but at the cost of accuracy. The accuracy of the new procedure is comparable to that of the well-tested successive overrelaxation method and to the available results in the literature. The second-order procedure turns out to be the most efficient method for the solution of the linear energy equation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents the details of experimental and numerical studies on the web crippling behaviour of hollow flange channel beams, known as LiteSteel beams (LSB). The LSB has a unique shape of a channel beam with two rectangular hollow flanges, made using a unique manufacturing process. Experimental and numerical studies have been carried out to evaluate the behaviour and design of LSBs subject to pure bending actions, predominant shear actions and combined actions. To date, however, no investigation has been conducted into the web crippling behaviour and strength of LSB sections under ETF and ITF load conditions. Hence experimental studies consisting of 28 tests were first conducted in this research to assess the web crippling behaviour and strengths of LSBs under two flange load cases (ETF and ITF). Experimental web crippling capacity results were then compared with the predictions from AS/NZS 4600 and AISI S100 design rules, which showed that AS/NZS 4600 and AISI S100 design equations are very unconservative for LSBs under ETF and ITF load cases. Hence improved equations were proposed to determine the web crippling capacities of LSBs. Finite element models of the tested LSBs were then developed, and used to determine the elastic buckling loads of LSBs under ETF and ITF load cases. New equations were proposed to determine the corresponding elastic buckling coefficients of LSBs. Finally suitable design rules were also developed under the Direct Strength Method format using the test results and buckling analysis results from finite element analyses.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the present work, solidification of a hyper-eutectic ammonium chloride solution in a bottom-cooled cavity (i.e. with stable thermal gradient) is numerically studied. A Rayleigh number based criterion is developed, which determines the conditions favorable for freckles formation. This criterion, when expressed in terms of physical properties and process parameters, yields the condition for plume formation as a function of concentration, liquid fraction, permeability, growth rate of a mushy layer and thermophysical properties. Subsequently, numerical simulations are performed for cases with initial and boundary conditions favoring freckle formation. The effects of parameters, such as cooling rate and initial concentration, on the formation and growth of freckles are investigated. It was found that a high cooling rate produced larger and more defined channels which are retained for a longer durations. Similarly, a lower initial concentration of solute resulted in fewer but more pronounced channels. The number and size of channels are also found to be related to the mushy zone thickness. The trends predicted with regard to the variation of number of channels with time under different process conditions are in accordance with the experimental observations reported in the literature.