945 resultados para numerical integration methods
Resumo:
This paper made an analysis of some numerical integration methods that can be used in electromagnetic transient simulations. Among the existing methods, we analyzed the trapezoidal integration method (or Heun formula), Simpson's Rule and Runge-Kutta. These methods were used in simulations of electromagnetic transients in power systems, resulting from switching operations and maneuvers that occur in transmission lines. Analyzed the characteristics such as accuracy, computation time and robustness of the methods of integration.
Resumo:
This paper presents a new numerical integration technique oil arbitrary polygonal domains. The polygonal domain is mapped conformally to the unit disk using Schwarz-Christoffel mapping and a midpoint quadrature rule defined oil this unit disk is used. This method eliminates the need for a two-level isoparametric mapping Usually required. Moreover, the positivity of the Jacobian is guaranteed. Numerical results presented for a few benchmark problems in the context of polygonal finite elements show that the proposed method yields accurate results.
Resumo:
Trabalho apresentado no Congresso Nacional de Matemática Aplicada à Indústria, 18 a 21 de novembro de 2014, Caldas Novas - Goiás
Resumo:
O desenvolvimento de projetos relacionados ao desempenho de diversas culturas tem recebido aperfeiçoamento cada vez maior, incorporado a modelos matemáticos sendo indispensável à utilização de equações cada vez mais consistentes que possibilitem previsão e maior aproximação do comportamento real, diminuindo o erro na obtenção das estimativas. Entre as operações unitárias que demandam maior estudo estão aquelas relacionadas com o crescimento da cultura, caracterizadas pela temperatura ideal para o acréscimo de matéria seca. Pelo amplo uso dos métodos matemáticos na representação, análise e obtenção de estimativas de graus-dia, juntamente com a grande importância que a cultura da cana-de-açúcar tem para a economia brasileira, foi realizada uma avaliação dos modelos matemáticos comumente usados e dos métodos numéricos de integração na estimativa da disponibilidade de graus-dia para essa cultura, na região de Botucatu, Estado de São Paulo. Os modelos de integração, com discretização de 6 em 6 h, apresentaram resultados satisfatórios na estimativa de graus-dia. As metodologias tradicionais apresentaram desempenhos satisfatórios quanto à estimativa de grausdia com base na curva de temperatura horária para cada dia e para os agrupamentos de três, sete, 15 e 30 dias. Pelo método numérico de integração, a região de Botucatu, Estado de São Paulo, apresentou disponibilidade térmica anual média de 1.070,6 GD para a cultura da cana-de-açúcar.
Resumo:
Non linear transformations are a good alternative for the numerical evaluation of singular and quasisingular integrals appearing in Boundary Element Method specially in the p-adaptive version. Some aspects of its numerical implementation in 2-D Potential codes is discussed and some examples are shown.
Resumo:
Esta tesis aborda la formulación, análisis e implementación de métodos numéricos de integración temporal para la solución de sistemas disipativos suaves de dimensión finita o infinita de manera que su estructura continua sea conservada. Se entiende por dichos sistemas aquellos que involucran acoplamiento termo-mecánico y/o efectos disipativos internos modelados por variables internas que siguen leyes continuas, de modo que su evolución es considerada suave. La dinámica de estos sistemas está gobernada por las leyes de la termodinámica y simetrías, las cuales constituyen la estructura que se pretende conservar de forma discreta. Para ello, los sistemas disipativos se describen geométricamente mediante estructuras metriplécticas que identifican claramente las partes reversible e irreversible de la evolución del sistema. Así, usando una de estas estructuras conocida por las siglas (en inglés) de GENERIC, la estructura disipativa de los sistemas es identificada del mismo modo que lo es la Hamiltoniana para sistemas conservativos. Con esto, métodos (EEM) con precisión de segundo orden que conservan la energía, producen entropía y conservan los impulsos lineal y angular son formulados mediante el uso del operador derivada discreta introducido para asegurar la conservación de la Hamiltoniana y las simetrías de sistemas conservativos. Siguiendo estas directrices, se formulan dos tipos de métodos EEM basados en el uso de la temperatura o de la entropía como variable de estado termodinámica, lo que presenta importantes implicaciones que se discuten a lo largo de esta tesis. Entre las cuales cabe destacar que las condiciones de contorno de Dirichlet son naturalmente impuestas con la formulación basada en la temperatura. Por último, se validan dichos métodos y se comprueban sus mejores prestaciones en términos de la estabilidad y robustez en comparación con métodos estándar. This dissertation is concerned with the formulation, analysis and implementation of structure-preserving time integration methods for the solution of the initial(-boundary) value problems describing the dynamics of smooth dissipative systems, either finite- or infinite-dimensional ones. Such systems are understood as those involving thermo-mechanical coupling and/or internal dissipative effects modeled by internal state variables considered to be smooth in the sense that their evolutions follow continuos laws. The dynamics of such systems are ruled by the laws of thermodynamics and symmetries which constitutes the structure meant to be preserved in the numerical setting. For that, dissipative systems are geometrically described by metriplectic structures which clearly identify the reversible and irreversible parts of their dynamical evolution. In particular, the framework known by the acronym GENERIC is used to reveal the systems' dissipative structure in the same way as the Hamiltonian is for conserving systems. Given that, energy-preserving, entropy-producing and momentum-preserving (EEM) second-order accurate methods are formulated using the discrete derivative operator that enabled the formulation of Energy-Momentum methods ensuring the preservation of the Hamiltonian and symmetries for conservative systems. Following these guidelines, two kind of EEM methods are formulated in terms of entropy and temperature as a thermodynamical state variable, involving important implications discussed throughout the dissertation. Remarkably, the formulation in temperature becomes central to accommodate Dirichlet boundary conditions. EEM methods are finally validated and proved to exhibit enhanced numerical stability and robustness properties compared to standard ones.
Resumo:
AMS Subj. Classification: 65D07, 65D30.
Resumo:
This paper discusses the consistent regularization property of the generalized α method when applied as an integrator to an initial value high index and singular differential-algebraic equation model of a multibody system. The regularization comes from within the discretization itself and the discretization remains consistent over the range of values the regularization parameter may take. The regularization involves increase of the smallest singular values of the ill-conditioned Jacobian of the discretization and is different from Baumgarte and similar techniques which tend to be inconsistent for poor choice of regularization parameter. This regularization also helps where pre-conditioning the Jacobian by scaling is of limited effect, for example, when the scleronomic constraints contain multiple closed loops or singular configuration or when high index path constraints are present. The feed-forward control in Kane's equation models is additionally considered in the numerical examples to illustrate the effect of regularization. The discretization presented in this work is adopted to the first order DAE system (unlike the original method which is intended for second order systems) for its A-stability and same order of accuracy for positions and velocities.
Resumo:
A numerical integration procedure for rotational motion using a rotation vector parametrization is explored from an engineering perspective by using rudimentary vector analysis. The incremental rotation vector, angular velocity and acceleration correspond to different tangent spaces of the rotation manifold at different times and have a non-vectorial character. We rewrite the equation of motion in terms of vectors lying in the same tangent space, facilitating vector space operations consistent with the underlying geometric structure. While any integration algorithm (that works within a vector space setting) may be used, we presently employ a family of explicit Runge-Kutta algorithms to solve this equation. While this work is primarily motivated out of a need for highly accurate numerical solutions of dissipative rotational systems of engineering interest, we also compare the numerical performance of the present scheme with some of the invariant preserving schemes, namely ALGO-C1, STW, LIEMIDEA] and SUBCYC-M. Numerical results show better local accuracy via the present approach vis-a-vis the preserving algorithms. It is also noted that the preserving algorithms do not simultaneously preserve all constants of motion. We incorporate adaptive time-stepping within the present scheme and this in turn enables still higher accuracy and a `near preservation' of constants of motion over significantly longer intervals. (C) 2010 The Franklin Institute. Published by Elsevier Ltd. All rights reserved.