988 resultados para numerical calculation
Resumo:
The response of the South China Sea (SCS) to Typhoon Imbudo was examined using POM model. The results indicated that SST decreased by 2-6 degrees C with a rightward-biased response as Typhoon Imbudo passed across the SCS. Due to a strong mixing process, the mixed layer (ML) depth deepened as much as 10-60 m and ML heat budget lost 824.78 W/m(2), which was OF dominated by the vertical mixing. By the response of upper ML heat transport, the temperature below the ML increased and oscillated near the inertial period. Furthermore, strong inertial currents were generated by the storm with the max currents up to 1.4 m/s in the upper ML.
Resumo:
"October 1964."
Resumo:
Finite Difference Time Domain (FDTD) Method and software are applied to obtain diffraction waves from modulated Gaussian plane wave illumination for right angle wedges and Fast Fourier Transform (FFT) is used to get diffraction coefficients in a wideband in the illuminated lit region. Theta and Phi polarization in 3-dimensional, TM and TE polarization in 2-dimensional cases are considered respectively for soft and hard diffraction coefficients. Results using FDTD method of perfect electric conductor (PEC) wedge are compared with asymptotic expressions from Uniform Theory of Diffraction (UTD). Extend the PEC wedges to some homogenous conducting and dielectric building materials for diffraction coefficients that are not available analytically in practical conditions. ^
Resumo:
This paper deals with in detail the permanence of the spiral structure of galaxies andthe characters of waser mechanism. A simplified model of galaxy is adopted. Variousdynamical characters of density waves are studied using numerical calculation method. Theresults verify very well the switch character f waser and the tunnel effect of density wavesat the potential barrier of corotation circle as is shown in a previous work of the author.
Resumo:
In Part I, theoretical derivations for Variational Monte Carlo calculations are compared with results from a numerical calculation of He; both indicate that minimization of the ratio estimate of Evar , denoted EMC ' provides different optimal variational parameters than does minimization of the variance of E MC • Similar derivations for Diffusion Monte Carlo calculations provide a theoretical justification for empirical observations made by other workers. In Part II, Importance sampling in prolate spheroidal coordinates allows Monte Carlo calculations to be made of E for the vdW molecule var He2' using a simplifying partitioning of the Hamiltonian and both an HF-SCF and an explicitly correlated wavefunction. Improvements are suggested which would permit the extension of the computational precision to the point where an estimate of the interaction energy could be made~
Resumo:
Gegenstand dieser Arbeit ist die nummerische Berechnung von Schleifenintegralen welche in höheren Ordnungen der Störungstheorie auftreten.rnAnalog zur reellen Emission kann man auch in den virtuellen Beiträgen Subtraktionsterme einführen, welche die kollinearen und soften Divergenzen des Schleifenintegrals entfernen. Die Phasenraumintegration und die Schleifenintegration können dann in einer einzigen Monte Carlo Integration durchgeführt werden. In dieser Arbeit zeigen wir wie eine solche numerische Integration unter zu Hilfenahme einer Kontourdeformation durchgeführt werden kann. Ausserdem zeigen wir wie man die benötigeten Integranden mit Rekursionsformeln berechnen kann.
Resumo:
Algorithms for planning quasistatic attitude maneuvers based on the Jacobian of the forward kinematic mapping of fully-reversed (FR) sequences of rotations are proposed in this paper. An FR sequence of rotations is a series of finite rotations that consists of initial rotations about the axes of a body-fixed coordinate frame and subsequent rotations that undo these initial rotations. Unlike the Jacobian of conventional systems such as a robot manipulator, the Jacobian of the system manipulated through FR rotations is a null matrix at the identity, which leads to a total breakdown of the traditional Jacobian formulation. Therefore, the Jacobian algorithm is reformulated and implemented so as to synthesize an FR sequence for a desired rotational displacement. The Jacobian-based algorithm presented in this paper identifies particular six-rotation FR sequences that synthesize desired orientations. We developed the single-step and the multiple-step Jacobian methods to accomplish a given task using six-rotation FR sequences. The single-step Jacobian method identifies a specific FR sequence for a given desired orientation and the multiple-step Jacobian algorithm synthesizes physically feasible FR rotations on an optimal path. A comparison with existing algorithms verifies the fast convergence ability of the Jacobian-based algorithm. Unlike closed-form solutions to the inverse kinematics problem, the Jacobian-based algorithm determines the most efficient FR sequence that yields a desired rotational displacement through a simple and inexpensive numerical calculation. The procedure presented here is useful for those motion planning problems wherein the Jacobian is singular or null.
Resumo:
An exact numerical calculation of ensemble-averaged length-scale-dependent conductance for the one-dimensional Anderson model is shown to support an earlier conjecture for a conductance minimum. The numerical results can be understood in terms of the Thouless expression for the conductance and the Wigner level-spacing statistics.
Resumo:
The velocity distribution function for the steady shear flow of disks (in two dimensions) and spheres (in three dimensions) in a channel is determined in the limit where the frequency of particle-wall collisions is large compared to particle-particle collisions. An asymptotic analysis is used in the small parameter epsilon, which is naL in two dimensions and na(2)L in three dimensions, where; n is the number density of particles (per unit area in two dimensions and per unit volume in three dimensions), L is the separation of the walls of the channel and a is the particle diameter. The particle-wall collisions are inelastic, and are described by simple relations which involve coefficients of restitution e(t) and e(n) in the tangential and normal directions, and both elastic and inelastic binary collisions between particles are considered. In the absence of binary collisions between particles, it is found that the particle velocities converge to two constant values (u(x), u(y)) = (+/-V, O) after repeated collisions with the wall, where u(x) and u(y) are the velocities tangential and normal to the wall, V = (1 - e(t))V-w/(1 + e(t)), and V-w and -V-w, are the tangential velocities of the walls of the channel. The effect of binary collisions is included using a self-consistent calculation, and the distribution function is determined using the condition that the net collisional flux of particles at any point in velocity space is zero at steady state. Certain approximations are made regarding the velocities of particles undergoing binary collisions :in order to obtain analytical results for the distribution function, and these approximations are justified analytically by showing that the error incurred decreases proportional to epsilon(1/2) in the limit epsilon --> 0. A numerical calculation of the mean square of the difference between the exact flux and the approximate flux confirms that the error decreases proportional to epsilon(1/2) in the limit epsilon --> 0. The moments of the velocity distribution function are evaluated, and it is found that [u(x)(2)] --> V-2, [u(y)(2)] similar to V-2 epsilon and -[u(x)u(y)] similar to V-2 epsilon log(epsilon(-1)) in the limit epsilon --> 0. It is found that the distribution function and the scaling laws for the velocity moments are similar for both two- and three-dimensional systems.
Resumo:
This paper carries out the analysis of mechanics of a grip system of three-key-board hydraulic tongs developed for offshore oil pipe lines which has been successfully used in oil fields in China. The main improvement of this system is that a lever frame structure is used in the structural design, which reduces greatly the stresses of the major components of the oil pipe tongs. Theoretical analysis and numerical calculation based on thirteen basic equations developed Show that the teeth board of the tongs is not easy to slip as frequently happens to other systems and is of higher reliability.
Resumo:
The expansion property of cement mortar under the attack of sulfate ions is studied by experimental and theoretical methods. First, cement mortars are fabricated with the ratio of water to cement of 0.4, 0.6, and 0.8. Secondly, the expansion of specimen immerged in sulphate solution is measured at different times. Thirdly, a theoretical model of expansion of cement mortar under sulphate erosion is suggested by virtue of represent volume element method. In this model, the damage evolution due to the interaction between delayed ettringite and cement mortar is taken into account. Finally, the numerical calculation is performed. The numerical and experimental results indicate that the model perfectly describes the expansion of the cement mortar.
Resumo:
This paper describes a new technology for solonchak soil reclamation in which surface flood irrigation of fresh water and pumped wells drainage of salty groundwater are combined. The comprehensive investigation of water and salt movement has been conducted through field test, laboratory simulation and numerical calculation. The dependence of desalination on irrigation water quantity, drainage quantity, leaching time and other parameters is obtained based on the field tests. The entire desalination process under the flood-irrigation and well-drainage operations was experimentally simulated in a vertical soil column. The water and salt movement has been numerically analysed for both the field and laboratory conditions. The present work indicates that this new technology can greatly improve the effects of desalination.
Resumo:
In this paper, the governing equations and the analytical method of the secondorder asymptotic field for the plane-straln crack problems of mode I have been presented. The numerical calculation has been carried out. The amplitude coefficients k2 of the second term of the asymptotic field have been determined after comparing the present results with some fine results of the finite element calculation. The variation of coefficients k2 with changes of specimen geometry and developments of plastic zone have been analysed. It is shown that the second term of the asymptotic field has significant influence on the near-crack-tip field. Therefore, we may reasonably argue that both the J-integral and the coefficient k2 can beeome two characterizing parameters for crack initiation.