998 resultados para nonstationary model


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Statistical tests in vector autoregressive (VAR) models are typically based on large-sample approximations, involving the use of asymptotic distributions or bootstrap techniques. After documenting that such methods can be very misleading even with fairly large samples, especially when the number of lags or the number of equations is not small, we propose a general simulation-based technique that allows one to control completely the level of tests in parametric VAR models. In particular, we show that maximized Monte Carlo tests [Dufour (2002)] can provide provably exact tests for such models, whether they are stationary or integrated. Applications to order selection and causality testing are considered as special cases. The technique developed is applied to quarterly and monthly VAR models of the U.S. economy, comprising income, money, interest rates and prices, over the period 1965-1996.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A transient flame simulation tool based on unsteady Reynolds average Navier Stokes (RANS) is characterized for stationary and nonstationary flame applications with a motivation of performing computationally affordable flame stability studies. Specifically, the KIVA-3V code is utilized with incorporation of a recently proposed modified eddy dissipation concept for simulating turbulence-chemistry interaction along with a model for radiation loss. Detailed comparison of velocities, turbulent kinetic energies, temperature, and species are made with the experimental data of the turbulent, non-premixed DLR_A CH4/H-2/N-2 jet flame. The comparison shows that the model is able to predict flame structure very well. The effect of some of the modeling assumptions is assessed, and strategies to model a stationary diffusion flame are recommended. Unsteady flame simulation capabilities of the numerical model are assessed by simulating an acoustically excited, experimental, oscillatory H-2-air diffusion flame. Comparisons are made with oscillatory velocity field and OH plots, and the numerical code is observed to predict transient flame structure well.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In the context of expensive numerical experiments, a promising solution for alleviating the computational costs consists of using partially converged simulations instead of exact solutions. The gain in computational time is at the price of precision in the response. This work addresses the issue of fitting a Gaussian process model to partially converged simulation data for further use in prediction. The main challenge consists of the adequate approximation of the error due to partial convergence, which is correlated in both design variables and time directions. Here, we propose fitting a Gaussian process in the joint space of design parameters and computational time. The model is constructed by building a nonstationary covariance kernel that reflects accurately the actual structure of the error. Practical solutions are proposed for solving parameter estimation issues associated with the proposed model. The method is applied to a computational fluid dynamics test case and shows significant improvement in prediction compared to a classical kriging model.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

2000 Mathematics Subject Classification: Primary: 62M10, 62J02, 62F12, 62M05, 62P05, 62P10; secondary: 60G46, 60F15.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This chapter looks at issues of non-stationarity in determining when a transient has occurred and when it is possible to fit a linear model to a non-linear response. The first issue is associated with the detection of loss of damping of power system modes. When some control device such as an SVC fails, the operator needs to know whether the damping of key power system oscillation modes has deteriorated significantly. This question is posed here as an alarm detection problem rather than an identification problem to get a fast detection of a change. The second issue concerns when a significant disturbance has occurred and the operator is seeking to characterize the system oscillation. The disturbance initially is large giving a nonlinear response; this then decays and can then be smaller than the noise level ofnormal customer load changes. The difficulty is one of determining when a linear response can be reliably identified between the non-linear phase and the large noise phase of thesignal. The solution proposed in this chapter uses “Time-Frequency” analysis tools to assistthe extraction of the linear model.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Research has been undertaken to ascertain the predictability of non-stationary time series using wavelet and Empirical Mode Decomposition (EMD) based time series models. Methods have been developed in the past to decompose a time series into components. Forecasting of these components combined with random component could yield predictions. Using this ideology, wavelet and EMD analyses have been incorporated separately which decomposes a time series into independent orthogonal components with both time and frequency localizations. The component series are fit with specific auto-regressive models to obtain forecasts which are later combined to obtain the actual predictions. Four non-stationary streamflow sites (USGS data resources) of monthly total volumes and two non-stationary gridded rainfall sites (IMD) of monthly total rainfall are considered for the study. The predictability is checked for six and twelve months ahead forecasts across both the methodologies. Based on performance measures, it is observed that wavelet based method has better prediction capabilities over EMD based method despite some of the limitations of time series methods and the manner in which decomposition takes place. Finally, the study concludes that the wavelet based time series algorithm can be used to model events such as droughts with reasonable accuracy. Also, some modifications that can be made in the model have been discussed that could extend the scope of applicability to other areas in the field of hydrology. (C) 2013 Elesvier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The joint time-frequency analysis method is adopted to study the nonlinear behavior varying with the instantaneous response for a class of S.D.O.F nonlinear system. A time-frequency masking operator, together with the conception of effective time-frequency region of the asymptotic signal are defined here. Based on these mathematical foundations, a so-called skeleton linear model (SLM) is constructed which has similar nonlinear characteristics with the nonlinear system. Two skeleton curves are deduced which can indicate the stiffness and damping in the nonlinear system. The relationship between the SLM and the nonlinear system, both parameters and solutions, is clarified. Based on this work a new identification technique of nonlinear systems using the nonstationary vibration data will be proposed through time-frequency filtering technique and wavelet transform in the following paper.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The stationary two-dimensional (x, z) near wakes behind a flat-based projectile which moves at a constant mesothermal speed (V∞) along a z-axis in a rarefied, fully ionized, plasma is studied using the wave model previously proposed by one of the authors (VCL). One-fluid theory is used to depict the free expansion of ambient plasma into the vacuum produced behind a fast-moving projectile. This nonstationary, one-dimensional (x, t) flow which is approximated by the K-dV equation can be transformed, through substitution, t=z/V∞, into a stationary two-dimensional (x, z) near wake flow seen by an observer moving with the body velocity (V∞). The initial value problem of the K-dV equation in (x, t) variables is solved by a specially devised numerical method. Comparisons of the present numerical solution for the asymptotically small and large times with available analytical solutions are made and found in satisfactory agreements.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This thesis presents a simplified state-variable method to solve for the nonstationary response of linear MDOF systems subjected to a modulated stationary excitation in both time and frequency domains. The resulting covariance matrix and evolutionary spectral density matrix of the response may be expressed as a product of a constant system matrix and a time-dependent matrix, the latter can be explicitly evaluated for most envelopes currently prevailing in engineering. The stationary correlation matrix of the response may be found by taking the limit of the covariance response when a unit step envelope is used. The reliability analysis can then be performed based on the first two moments of the response obtained.

The method presented facilitates obtaining explicit solutions for general linear MDOF systems and is flexible enough to be applied to different stochastic models of excitation such as the stationary models, modulated stationary models, filtered stationary models, and filtered modulated stationary models and their stochastic equivalents including the random pulse train model, filtered shot noise, and some ARMA models in earthquake engineering. This approach may also be readily incorporated into finite element codes for random vibration analysis of linear structures.

A set of explicit solutions for the response of simple linear structures subjected to modulated white noise earthquake models with four different envelopes are presented as illustration. In addition, the method has been applied to three selected topics of interest in earthquake engineering, namely, nonstationary analysis of primary-secondary systems with classical or nonclassical dampings, soil layer response and related structural reliability analysis, and the effect of the vertical components on seismic performance of structures. For all the three cases, explicit solutions are obtained, dynamic characteristics of structures are investigated, and some suggestions are given for aseismic design of structures.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A constrained non-linear, physical model-based, predictive control (NPMPC) strategy is developed for improved plant-wide control of a thermal power plant. The strategy makes use of successive linearisation and recursive state estimation using extended Kalman filtering to obtain a linear state-space model. The linear model and a quadratic programming routine are used to design a constrained long-range predictive controller One special feature is the careful selection of a specific set of plant model parameters for online estimation, to account for time-varying system characteristics resulting from major system disturbances and ageing. These parameters act as nonstationary stochastic states and help to provide sufficient degrees-of-freedom to obtain unbiased estimates of controlled outputs. A 14th order non-linear plant model, simulating the dominant characteristics of a 200 MW oil-fired pou er plant has been used to test the NPMPC algorithm. The control strategy gives impressive simulation results, during large system disturbances and extremely high rate of load changes, right across the operating range. These results compare favourably to those obtained with the state-space GPC method designed under similar conditions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Temporal dynamics and speaker characteristics are two important features of speech that distinguish speech from noise. In this paper, we propose a method to maximally extract these two features of speech for speech enhancement. We demonstrate that this can reduce the requirement for prior information about the noise, which can be difficult to estimate for fast-varying noise. Given noisy speech, the new approach estimates clean speech by recognizing long segments of the clean speech as whole units. In the recognition, clean speech sentences, taken from a speech corpus, are used as examples. Matching segments are identified between the noisy sentence and the corpus sentences. The estimate is formed by using the longest matching segments found in the corpus sentences. Longer speech segments as whole units contain more distinct dynamics and richer speaker characteristics, and can be identified more accurately from noise than shorter speech segments. Therefore, estimation based on the longest recognized segments increases the noise immunity and hence the estimation accuracy. The new approach consists of a statistical model to represent up to sentence-long temporal dynamics in the corpus speech, and an algorithm to identify the longest matching segments between the noisy sentence and the corpus sentences. The algorithm is made more robust to noise uncertainty by introducing missing-feature based noise compensation into the corpus sentences. Experiments have been conducted on the TIMIT database for speech enhancement from various types of nonstationary noise including song, music, and crosstalk speech. The new approach has shown improved performance over conventional enhancement algorithms in both objective and subjective evaluations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The applicability of ultra-short-term wind power prediction (USTWPP) models is reviewed. The USTWPP method proposed extracts featrues from historical data of wind power time series (WPTS), and classifies every short WPTS into one of several different subsets well defined by stationary patterns. All the WPTS that cannot match any one of the stationary patterns are sorted into the subset of nonstationary pattern. Every above WPTS subset needs a USTWPP model specially optimized for it offline. For on-line application, the pattern of the last short WPTS is recognized, then the corresponding prediction model is called for USTWPP. The validity of the proposed method is verified by simulations.