947 resultados para nonlinear partial differential equation


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A scale-invariant moving finite element method is proposed for the adaptive solution of nonlinear partial differential equations. The mesh movement is based on a finite element discretisation of a scale-invariant conservation principle incorporating a monitor function, while the time discretisation of the resulting system of ordinary differential equations is carried out using a scale-invariant time-stepping which yields uniform local accuracy in time. The accuracy and reliability of the algorithm are successfully tested against exact self-similar solutions where available, and otherwise against a state-of-the-art h-refinement scheme for solutions of a two-dimensional porous medium equation problem with a moving boundary. The monitor functions used are the dependent variable and a monitor related to the surface area of the solution manifold. (c) 2005 IMACS. Published by Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This article describes a number of velocity-based moving mesh numerical methods formultidimensional nonlinear time-dependent partial differential equations (PDEs). It consists of a short historical review followed by a detailed description of a recently developed multidimensional moving mesh finite element method based on conservation. Finite element algorithms are derived for both mass-conserving and non mass-conserving problems, and results shown for a number of multidimensional nonlinear test problems, including the second order porous medium equation and the fourth order thin film equation as well as a two-phase problem. Further applications and extensions are referenced.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mathematics Subject Classification: 26A33, 76M35, 82B31

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Recently, the numerical modelling and simulation for fractional partial differential equations (FPDE), which have been found with widely applications in modern engineering and sciences, are attracting increased attentions. The current dominant numerical method for modelling of FPDE is the explicit Finite Difference Method (FDM), which is based on a pre-defined grid leading to inherited issues or shortcomings. This paper aims to develop an implicit meshless approach based on the radial basis functions (RBF) for numerical simulation of time fractional diffusion equations. The discrete system of equations is obtained by using the RBF meshless shape functions and the strong-forms. The stability and convergence of this meshless approach are then discussed and theoretically proven. Several numerical examples with different problem domains are used to validate and investigate accuracy and efficiency of the newly developed meshless formulation. The results obtained by the meshless formations are also compared with those obtained by FDM in terms of their accuracy and efficiency. It is concluded that the present meshless formulation is very effective for the modelling and simulation for FPDE.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A method has been presented for constructing non-separable solutions of homogeneous linear partial differential equations of the type F(D, D′)W = 0, where D = ∂/∂x, D′ = ∂/∂y, Image where crs are constants and n stands for the order of the equation. The method has also been extended for equations of the form Φ(D, D′, D″)W = 0, where D = ∂/∂x, D′ = ∂/∂y, D″ = ∂/∂z and Image As illustration, the method has been applied to obtain nonseparable solutions of the two and three dimensional Helmholtz equations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Various families of exact solutions to the Einstein and Einstein-Maxwell field equations of General Relativity are treated for situations of sufficient symmetry that only two independent variables arise. The mathematical problem then reduces to consideration of sets of two coupled nonlinear differential equations.

The physical situations in which such equations arise include: a) the external gravitational field of an axisymmetric, uncharged steadily rotating body, b) cylindrical gravitational waves with two degrees of freedom, c) colliding plane gravitational waves, d) the external gravitational and electromagnetic fields of a static, charged axisymmetric body, and e) colliding plane electromagnetic and gravitational waves. Through the introduction of suitable potentials and coordinate transformations, a formalism is presented which treats all these problems simultaneously. These transformations and potentials may be used to generate new solutions to the Einstein-Maxwell equations from solutions to the vacuum Einstein equations, and vice-versa.

The calculus of differential forms is used as a tool for generation of similarity solutions and generalized similarity solutions. It is further used to find the invariance group of the equations; this in turn leads to various finite transformations that give new, physically distinct solutions from old. Some of the above results are then generalized to the case of three independent variables.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this study we investigate the existence, uniqueness and asymptotic stability of solutions of a class of nonlinear integral equations which are representations for some time dependent non- linear partial differential equations. Sufficient conditions are established which allow one to infer the stability of the nonlinear equations from the stability of the linearized equations. Improved estimates of the domain of stability are obtained using a Liapunov Functional approach. These results are applied to some nonlinear partial differential equations governing the behavior of nonlinear continuous dynamical systems.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Differential equations are often directly solvable by analytical means only in their one dimensional version. Partial differential equations are generally not solvable by analytical means in two and three dimensions, with the exception of few special cases. In all other cases, numerical approximation methods need to be utilized. One of the most popular methods is the finite element method. The main areas of focus, here, are the Poisson heat equation and the plate bending equation. The purpose of this paper is to provide a quick walkthrough of the various approaches that the authors followed in pursuit of creating optimal solvers, accelerated with the use of graphical processing units, and comparing them in terms of accuracy and time efficiency with existing or self-made non-accelerated solvers.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work deals with noise removal by the use of an edge preserving method whose parameters are automatically estimated, for any application, by simply providing information about the standard deviation noise level we wish to eliminate. The desired noiseless image u(x), in a Partial Differential Equation based model, can be viewed as the solution of an evolutionary differential equation u t(x) = F(u xx, u x, u, x, t) which means that the true solution will be reached when t ® ¥. In practical applications we should stop the time ''t'' at some moment during this evolutionary process. This work presents a sufficient condition, related to time t and to the standard deviation s of the noise we desire to remove, which gives a constant T such that u(x, T) is a good approximation of u(x). The approach here focused on edge preservation during the noise elimination process as its main characteristic. The balance between edge points and interior points is carried out by a function g which depends on the initial noisy image u(x, t0), the standard deviation of the noise we want to eliminate and a constant k. The k parameter estimation is also presented in this work therefore making, the proposed model automatic. The model's feasibility and the choice of the optimal time scale is evident through out the various experimental results.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, we consider analytical and numerical solutions to the Dirichlet boundary-value problem for the biharmonic partial differential equation on a disc of finite radius in the plane. The physical interpretation of these solutions is that of the harmonic oscillations of a thin, clamped plate. For the linear, fourth-order, biharmonic partial differential equation in the plane, it is well known that the solution method of separation in polar coordinates is not possible, in general. However, in this paper, for circular domains in the plane, it is shown that a method, here called quasi-separation of variables, does lead to solutions of the partial differential equation. These solutions are products of solutions of two ordinary linear differential equations: a fourth-order radial equation and a second-order angular differential equation. To be expected, without complete separation of the polar variables, there is some restriction on the range of these solutions in comparison with the corresponding separated solutions of the second-order harmonic differential equation in the plane. Notwithstanding these restrictions, the quasi-separation method leads to solutions of the Dirichlet boundary-value problem on a disc with centre at the origin, with boundary conditions determined by the solution and its inward drawn normal taking the value 0 on the edge of the disc. One significant feature for these biharmonic boundary-value problems, in general, follows from the form of the biharmonic differential expression when represented in polar coordinates. In this form, the differential expression has a singularity at the origin, in the radial variable. This singularity translates to a singularity at the origin of the fourth-order radial separated equation; this singularity necessitates the application of a third boundary condition in order to determine a self-adjoint solution to the Dirichlet boundary-value problem. The penultimate section of the paper reports on numerical solutions to the Dirichlet boundary-value problem; these results are also presented graphically. Two specific cases are studied in detail and numerical values of the eigenvalues are compared with the results obtained in earlier studies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

2000 Mathematics Subject Classification: 60H15, 60H40

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An algorithm is produced for the symbolic solving of systems of partial differential equations by means of multivariate Laplace–Carson transform. A system of K equations with M as the greatest order of partial derivatives and right-hand parts of a special type is considered. Initial conditions are input. As a result of a Laplace–Carson transform of the system according to initial condition we obtain an algebraic system of equations. A method to obtain compatibility conditions is discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Schrödinger’s equation of a three-body system is a linear partial differential equation (PDE) defined on the 9-dimensional configuration space, ℝ9, naturally equipped with Jacobi’s kinematic metric and with translational and rotational symmetries. The natural invariance of Schrödinger’s equation with respect to the translational symmetry enables us to reduce the configuration space to that of a 6-dimensional one, while that of the rotational symmetry provides the quantum mechanical version of angular momentum conservation. However, the problem of maximizing the use of rotational invariance so as to enable us to reduce Schrödinger’s equation to corresponding PDEs solely defined on triangular parameters—i.e., at the level of ℝ6/SO(3)—has never been adequately treated. This article describes the results on the orbital geometry and the harmonic analysis of (SO(3),ℝ6) which enable us to obtain such a reduction of Schrödinger’s equation of three-body systems to PDEs solely defined on triangular parameters.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, we consider the numerical solution of a fractional partial differential equation with Riesz space fractional derivatives (FPDE-RSFD) on a finite domain. Two types of FPDE-RSFD are considered: the Riesz fractional diffusion equation (RFDE) and the Riesz fractional advection–dispersion equation (RFADE). The RFDE is obtained from the standard diffusion equation by replacing the second-order space derivative with the Riesz fractional derivative of order αset membership, variant(1,2]. The RFADE is obtained from the standard advection–dispersion equation by replacing the first-order and second-order space derivatives with the Riesz fractional derivatives of order βset membership, variant(0,1) and of order αset membership, variant(1,2], respectively. Firstly, analytic solutions of both the RFDE and RFADE are derived. Secondly, three numerical methods are provided to deal with the Riesz space fractional derivatives, namely, the L1/L2-approximation method, the standard/shifted Grünwald method, and the matrix transform method (MTM). Thirdly, the RFDE and RFADE are transformed into a system of ordinary differential equations, which is then solved by the method of lines. Finally, numerical results are given, which demonstrate the effectiveness and convergence of the three numerical methods.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This thesis is concerned with uniformly convergent finite element methods for numerically solving singularly perturbed parabolic partial differential equations in one space variable. First, we use Petrov-Galerkin finite element methods to generate three schemes for such problems, each of these schemes uses exponentially fitted elements in space. Two of them are lumped and the other is non-lumped. On meshes which are either arbitrary or slightly restricted, we derive global energy norm and L2 norm error bounds, uniformly in the diffusion parameter. Under some reasonable global assumptions together with realistic local assumptions on the solution and its derivatives, we prove that these exponentially fitted schemes are locally uniformly convergent, with order one, in a discrete L∞norm both outside and inside the boundary layer. We next analyse a streamline diffusion scheme on a Shishkin mesh for a model singularly perturbed parabolic partial differential equation. The method with piecewise linear space-time elements is shown, under reasonable assumptions on the solution, to be convergent, independently of the diffusion parameter, with a pointwise accuracy of almost order 5/4 outside layers and almost order 3/4 inside the boundary layer. Numerical results for the above schemes are presented. Finally, we examine a cell vertex finite volume method which is applied to a model time-dependent convection-diffusion problem. Local errors away from all layers are obtained in the l2 seminorm by using techniques from finite element analysis.