866 resultados para noninvasive cortical stimulation
Resumo:
Objectives: The use of noninvasive cortical electrical stimulation with weak currents has significantly increased in basic and clinical human studies. Initial, preliminary studies with this technique have shown encouraging results; however, the safety and tolerability of this method of brain stimulation have not been sufficiently explored yet. The purpose of our study was to assess the effects of direct current (DC) and alternating current (AC) stimulation at different intensities in order to measure their effects on cognition, mood, and electroencephalogram. Methods: Eighty-two healthy, right-handed subjects received active and sham stimulation in a randomized order. We conducted 164 ninety-minute sessions of electrical stimulation in 4 different protocols to assess safety of (1) anodal DC of the dorsolateral prefrontal cortex (DLPFC); (2) cathodal DC of the DLPFC; (3) intermittent anodal DC of the DLPFC and; (4) AC on the zygomatic process. We used weak currents of 1 to 2 mA (for DC experiments) or 0.1 to 0.2 mA (for AC experiment). Results: We found no significant changes in electroencephalogram, cognition, mood, and pain between groups and a low prevalence of mild adverse effects (0.11% and 0.08% in the active and sham stimulation groups, respectively), mainly, sleepiness and mild headache that were equally distributed between groups. Conclusions: Here, we show no neurophysiological or behavioral signs that transcranial DC stimulation or AC stimulation with weak currents induce deleterious changes when comparing active and sham groups. This study provides therefore additional information for researchers and ethics committees, adding important results to the safety pool of studies assessing the effects of cortical stimulation using weak electrical currents. Further studies in patients with neuropsychiatric disorders are warranted.
Resumo:
Objectives: The therapeutic effects of transcranial magnetic stimulation (TMS) and transcranial direct current stimulation in patients with major depression have shown promising results; however, there is a lack of mechanistic studies using biological markers (BMs) as an outcome. Therefore, our aim was to review noninvasive brain stimulation trials in depression using BMs. Methods: The following databases were used for our systematic review: MEDLINE, Web of Science, Cochrane, and SCIELO. We examined articles published before November 2012 that used TMS and transcranial direct current stimulation as an intervention for depression and had BM as an outcome measure. The search was limited to human studies written in English. Results: Of 1234 potential articles, 52 articles were included. Only studies using TMS were found. Biological markers included immune and endocrine serum markers, neuroimaging techniques, and electrophysiological outcomes. In 12 articles (21.4%), end point BM measurements were not significantly associated with clinical outcomes. All studies reached significant results in the main clinical rating scales. Biological marker outcomes were used as predictors of response, to understand mechanisms of TMS, and as a surrogate of safety. Conclusions: Functional magnetic resonance imaging, single-photon emission computed tomography, positron emission tomography, magnetic resonance spectroscopy, cortical excitability, and brain-derived neurotrophic factor consistently showed positive results. Brain-derived neurotrophic factor was the best predictor of patients’ likeliness to respond. These initial results are promising; however, all studies investigating BMs are small, used heterogeneous samples, and did not take into account confounders such as age, sex, or family history. Based on our findings, we recommend further studies to validate BMs in noninvasive brain stimulation trials in MDD.
Resumo:
Single session repetitive transcranial magnetic stimulation (rTMS) of the motor cortex (M1) is effective in the treatment of chronic pain patients but the analgesic effect of repeated sessions is still unknown We evaluated the effects of rTMS in patients with refractory pain due to complex regional pain syndrome (CRPS) type I Twenty three patients presenting CRPS type I of 1 upper limb were treated with the best medical treatment (analgesics and adjuvant medications physical therapy) plus 10 daily sessions of either real (r) or sham (s) 10Hz rTMS to the motor cortex (M1) Patients were assessed daily and after 1 week and 3 months after the last session using the Visual Analogical Scale (VAS) the McGill Pain Questionnaire (MPQ) the Health Survey 36 (SF 36) and the Hamilton Depression (HDRS) During treatment there was a significant reduction in the VAS scores favoring the r rTMS group mean reduction of 4 65 cm (50 9%) against 2 18 cm (24 7%) in the s rTMS group The highest reduction occurred at the tenth session and correlated to improvement in the affective and emotional subscores of the MPQ and SF 36 Real rTMS to the M1 produced analgesic effects and positive changes in affective aspects of pain in CRPS patients during the period of stimulation Perspective This study shows an efficacy of repetitive sessions of high frequency rTMS as an add on therapy to refractory CAPS type I patients It had a positive effect in different aspects of pain (sensory discriminative and emotional affective) It opens the perspective for the clinical use of this technique (C) 2010 by the American Pain Society
Resumo:
Objective: We aimed to investigate the efficacy of 20 Hz repetitive transcranial magnetic stimulation (rTMS) of either right or left dorsolateral prefrontal cortex (DLPFC) as compared to sham rTMS for the relief of posttraumatic stress disorder (PTSD)-associated symptoms. Method: In this double-blind, placebo-controlled phase II trial conducted between October 2005 and July 2008, 30 patients with DSM-IV-diagnosed PTSD were randomly assigned to receive 1 of the following treatments: active 20 Hz rTMS of the right DLPFC, active 20 Hz rTMS of the left DLPFC, or sham rTMS. Treatments were administered in 10 daily sessions over 2 weeks. A blinded rater assessed severity of core PTSD symptoms, depression, and anxiety before, during, and after completion of the treatment protocol. In addition, a battery of neuropsychological tests was measured before and after treatment. Results: Results show that both active conditions-20 Hz rTMS of left and right DLPFC induced a significant decrease in PTSD symptoms as indexed by the PTSD Checklist and Treatment Outcome PTSD Scale; however, right rTMS induced a larger effect as compared to left rTMS. In addition, there was a significant improvement of mood after left rTMS and a significant reduction of anxiety following right rTMS. Improvements in PTSD symptoms were long lasting; effects were still significant at the 3-month follow-up. Finally, neuropsychological evaluation showed that active 20 Hz rTMS is not associated with cognitive worsening and is safe for use in patients with PTSD. Conclusions: These results support the notion that modulation of prefrontal cortex can alleviate the core symptoms of PTSD and suggest that high-frequency rTMS of right DLPFC might be the optimal treatment strategy. J an Psychiatry 2010;71(8):992-999 (C) Copyright 2009 Physicians Postgraduate Press, Inc.
Resumo:
Noninvasive brain stimulation (NIBS) techniques are being increasingly investigated as a therapeutic approach for neuropsychiatric disorders. One method is to combine NIBS with pharmacotherapy to enhance the clinical effects or avoid an increase in drug dosages to decrease the incidence of side effects. However, few studies to date have investigated the relative and combined efficacy of NIBS with pharmacotherapy. Based on a literature review of previous studies and meta-analyses for major depression, we identified four randomized, controlled trials that tested the combination of NIBS with a new drug and two trials that directly compared NIBS versus pharmacotherapy. There was no study designed to address the relative efficacy of each intervention against placebo and against combined therapy. We discuss the methods and rationale of NIBS-pharmacotherapy trials, addressing some methodological aspects, including factorial design, recruitment, blinding, blinding assessment, placebo effect and quantitative aspects, such as power analysis, statistics and interaction effects. Our review of the methodology underlying NIBS-drug trials provides insights for the further clinical research development of NIBS in major depression.
Resumo:
Smoking cue-provoked craving is an intricate behavior associated with strong changes in neural networks. Craving is one of the main reasons subjects continue to smoke; therefore interventions that can modify activity in neural networks associated with craving can be useful tools in future research investigating novel treatments for smoking cessation. The goal of this study was to use a neuromodulatory technique associated with a powerful effect on spontaneous neuronal firing - transcranial direct current stimulation (tDCS) - to modify cue-provoked smoking craving. Based on preliminary data showing that craving can be modified after a single tDCS session, here we investigated the effects of repeated tDCS sessions on craving behavior. Twenty-seven subjects were randomized to receive sham or active tDCS (anodal tDCS of the left DLPFC). Our results show a significant cumulative effect of tDCS on modifying smoking cue-provoked craving. In fact, in the group of active stimulation, smoking cues had an opposite effect on craving after stimulation - it decreased craving - as compared to sham stimulation in which there was a small decrease or increase on craving. In addition, during these 5 days of stimulation there was a small but significant decrease in the number of cigarettes smoked in the active as compared to sham tDCS group. Our findings extend the results of our previous study as they confirm the notion that tDCS has a specific effect on craving behavior and that the effects of several sessions can increase the magnitude of its effect. These results open avenues for the exploration of this method as a therapeutic alternative for smoking cessation and also as a mean to change stimulus-induced behavior. (C) 2009 Elsevier Ireland Ltd. All rights reserved.
Resumo:
Study aim. - We describe a new neuronavigation-guided technique to target the posterior-superior insula (PSI) using a cooled-double-cone coil for deep cortical stimulation. Introduction. - Despite the analgesic effects brought about by repetitive transcranial magnetic stimulation (TMS) to the primary motor and prefrontal cortices, a significant proportion of patients remain symptomatic. This encouraged the search for new targets that may provide stronger pain relief. There is growing evidence that the posterior insula is implicated in the integration of painful stimuli in different pain syndromes and in homeostatic thermal integration. Methods. - The primary motor cortex representation of the lower leg was used to calculate the motor threshold and thus, estimate the intensity of PSI stimulation. Results. - Seven healthy volunteers were stimulated at 10 Hz to the right PSI and showed subjective changes in cold perception. The technique was safe and well tolerated. Conclusions. - The right posterior-superior insula is worth being considered in future studies as a possible target for rTMS stimulation in chronic pain patients. (c) 2012 Elsevier Masson SAS. All rights reserved.
Resumo:
We investigated the analgesic effects of unilateral repetitive transcranial magnetic stimulation (rTMS) of the motor cortex (M1) or dorsolateral prefrontal cortex (DLPFC) in two models of experimental pain in healthy volunteers. Two studies were carried out in parallel in two groups of 26 paid healthy volunteers. The effects of active or sham rTMS (frequency, 10 Hz; intensity, 80% resting motor threshold) applied to the right M1 or DLPFC were compared in a double-blind randomized cross-over design. In the first series of experiments, we analyzed the effects of rTMS on thermal (heat and cold) detection and pain thresholds measured on both hands and the left foot, by standardized quantitative sensory testing methods. In the second series of experiments, we measured the effects of M1 or DLPFC rTMS on the threshold and recruitment curves of the RIII nociceptive reflex evoked by ipsilateral electrical stimulation of the sural nerve and recorded on the biceps femoris of both lower limbs. In both studies, measurements were taken before and up to 60 min after the end of rTMS. Active rTMS of both M1 and DLPFC significantly increased the thermal pain thresholds, measured for both hands and the left foot, this effect being most marked for cold pain. These effects, which lasted at least 1 h after rTMS, were selective because they were not associated with changes in non-painful thermal sensations. By contrast, the second study showed that rTMS of M1 or DLPFC had no significant effect on the threshold or recruitment curve of the nociceptive flexion RIII reflex. Our findings demonstrate that unilateral rTMS of M1 or DLPFC induces diffuse and selective analgesic effects in healthy volunteers. The lack of effect on the RIII reflex suggests that such analgesic effects may not depend on the activation of descending inhibitory systems. (C) 2009 International Association for the Study of Pain. Published by Elsevier B. V. All rights reserved.
Resumo:
Antiepileptic drugs allow controlling seizures in 70% of patients. For the others, a presurgical work-up should be undertaken, especially if a focal seizure origin is suspected; however, only a fraction of pharmacoresistant patients will be offered resective (curative) surgery. In the last 15 years, several palliative therapies using extra- or intracranial electrical stimulations have been developed. This article presents the vagal nerve stimulation, the deep brain stimulation (targeting the mesiotemporal region or the thalamus), and the cortical stimulation "on demand". All show an overall long-term responder rate between 30-50%, but less than 5% of patients becoming seizure free. It is to hope that a better understanding of epileptogenic mechanisms and of the implicated neuronal networks will lead to an improvement of these proportions.
Resumo:
Patients with clinical diseases often present psychiatric conditions whose pharmacological treatment is hampered due to hazardous interactions with the clinical treatment and/or disease. This is particularly relevant for major depressive disorder, the most common psychiatric disorder in the general hospital. In this context, nonpharmacological interventions could be useful therapies; and, among those, noninvasive brain stimulation (NIBS) might be an interesting option. The main methods of NIBS are repetitive transcranial magnetic stimulation (rTMS), which was recently approved as a nonresearch treatment for some psychiatric conditions, and transcranial direct current stimulation (tDCS), a technique that is currently limited to research scenarios but has shown promising results. Therefore, our aim was to review the main medical conditions associated with high depression rates, the main obstacles for depression treatment, and whether these therapies could be a useful intervention for such conditions. We found that depression is an important and prevalent comorbidity in a variety of diseases such as epilepsy, stroke, Parkinson's disease, myocardial infarction, cancer, and in other conditions such as pregnancy and in patients without enteral access. We found that treatment of depression is often suboptimal within the above contexts and that rTMS and tDCS therapies have been insufficiently appraised. We discuss whether rTMS and tDCS could have a significant impact in treating depression that develops within a clinical context, considering its unique characteristics such as the absence of pharmacological interactions, the use of a nonenteral route, and as an augmentation therapy for antidepressants.
Resumo:
Objective: Based on evidence showing that electrical stimulation of the nervous system is an effective method to decrease chronic neurogenic pain, we aimed to investigate whether the combination of 2 methods of electrical stimulation-a method of peripheral stimulation [transcutaneous electrical nerve stimulation (TENS)] and a method of noninvasive brain stimulation (transcranial direct current stimulation (tDCS)]-induces greater pain reduction as compared with tDCS alone and sham stimulation. Methods: We performed a preliminary, randomized, sham-controlled, crossover, clinical study in which 8 patients were randomized to receive active tDCS/active TENS (""tDCS/TENS"" group), active tDCS/sham TENS (""tDCS"" group), and sham tDCS/sham TENS (""sham"" group) stimulation. Assessments were performed immediately before and after each condition by a blinded rater. Results: The results showed that there was a significant difference in pain reduction across the conditions Of stimulation (P = 0.006). Post hoc tests showed significant pain reduction as compared with baseline after the tDCS/TENS condition [reduction by 36.5% (+/- 10.7), P = 0.004] and the tDCS condition [reduction by 15.5% (+/- 4.9), P = 0.014], but not after sham stimulation (P = 0.35). In addition, tDCS/TENS induced greater pain reduction than tDCS (P = 0.02). Conclusions: The results of this pilot study suggest that the combination of TENS with tDCS has a superior effect compared with tDCS alone.
Resumo:
Background: Functional neuroimaging studies have shown that specific brain areas are associated with alcohol craving including the dorsolateral prefrontal cortex (DLPFC). We tested whether modulation of DLPFC using transcranial direct current stimulation (tDCS) could alter alcohol craving in patients with alcohol dependence while being exposed to alcohol cues. Methods: We performed a randomized sham-controlled study in which 13 subjects received sham and active bilateral tDCS delivered to DLPFC (anodal left/cathodal right and anodal right/cathodal left). For sham stimulation, the electrodes were placed at the same positions as in active stimulation; however, the stimulator was turned off after 30 s of stimulation. Subjects were presented videos depicting alcohol consumption to increase alcohol craving. Results: Our results showed that both anodal left/cathodal right and anodal right/cathodal left significantly decreased alcohol craving compared to sham stimulation (p < 0.0001). In addition, we found that following treatment, craving could not be further increased by alcohol cues. Conclusions: Our findings showed that tDCS treatment to DLPFC can reduce alcohol craving. These findings extend the results of previous studies using noninvasive brain stimulation to reduce craving in humans. Given the relatively rapid suppressive effect of tDCS and the highly fluctuating nature of alcohol craving, this technique may prove to be a valuable treatment strategy within the clinical setting. (C) 2007 Elsevier Ireland Ltd. All rights reserved.
Resumo:
Motor cortex stimulation is generally suggested as a therapy for patients with chronic and refractory neuropathic pain. However, the mechanisms underlying its analgesic effects are still unknown. In a previous study, we demonstrated that cortical stimulation increases the nociceptive threshold of naive conscious rats with opioid participation. In the present study, we investigated the neurocircuitry involved during the antinociception induced by transdural stimulation of motor cortex in naive rats considering that little is known about the relation between motor cortex and analgesia. The neuronal activation patterns were evaluated in the thalamic nuclei and midbrain periaqueductal gray. Neuronal inactivation in response to motor cortex stimulation was detected in thalamic sites both in terms of immunolabeling (Zif268/Fos) and in the neuronal firing rates in ventral posterolateral nuclei and centromedian-parafascicular thalamic complex. This effect was particularly visible for neurons responsive to nociceptive peripheral stimulation. Furthermore, motor cortex stimulation enhanced neuronal firing rate and Fos immunoreactivity in the ipsilateral periaqueductal gray. We have also observed a decreased Zif268, delta-aminobutyric acid (GABA), and glutamic acid decarboxylase expression within the same region, suggesting an inhibition of GABAergic interneurons of the midbrain periaqueductal gray, consequently activating neurons responsible for the descending pain inhibitory control system. Taken together, the present findings suggest that inhibition of thalamic sensory neurons and disinhibition of the neurons in periaqueductal gray are at least in part responsible for the motor cortex stimulation-induced antinociception. (C) 2012 International Association for the Study of Pain. Published by Elsevier B.V. All rights reserved.
Resumo:
Motor-evoked potentials (MEPs) vary in size from one stimulus to the next. The objective of this study was to determine the cause and source of trial-to-trial MEP size variability. In two experiments involving 10 and 14 subjects, the variability of MEPs to cortical stimulation (cortical-MEPs) in abductor digiti minimi (ADM) and abductor hallucis (AH) was compared to those responses obtained using the triple stimulation technique (cortical-TST). The TST eliminates the effects of motor neuron (MN) response desynchronization and of repetitive MN discharges. Submaximal stimuli were used in both techniques. In six subjects, cortical-MEP variability was compared to that of brainstem-MEP and brainstem-TST. Variability was greater for MEPs than that for TST responses, by approximately one-third. The variability was the same for cortical- and brainstem-MEPs and was similar in ADM and AH. Variability concerned at least 10-15% of the MN pool innervating the target muscle. With the stimulation parameters used, repetitive MN discharges did not influence variability. For submaximal stimuli, approximately two-third of the observed MEP size variability is caused by the variable number of recruited alpha-MNs and approximately one-third by changing synchronization of MN discharges. The source of variability is most likely localized at the spinal segmental level.
Resumo:
Purchases are driven by consumers’ product preferences and price considerations. Using caloric vestibular stimulation (CVS), we investigated the role of vestibular-affective circuits in purchase decision-making. CVS is an effective noninvasive brain stimulation method, which activates vestibular and overlapping emotional circuits (e.g., the insular cortex and the anterior cingulate cortex (ACC)). Subjects were exposed to CVS and sham stimulation while they performed two purchase decision-making tasks. In Experiment 1 subjects had to decide whether to purchase or not. CVS significantly reduced probability of buying a product. In Experiment 2 subjects had to rate desirability of the products and willingness to pay (WTP) while they were exposed to CVS and sham stimulation. CVS modulated desirability of the products but not WTP. The results suggest that CVS interfered with emotional circuits and thus attenuated the pleasant and rewarding effect of acquisition, which in turn reduced purchase probability. The present findings contribute to the rapidly growing literature on the neural basis of purchase decision-making.