998 resultados para non-sonicated vesicles


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The gel to liquid crystalline phase transition of the double-chained cationic dioctadecyldimethylammonium chloride and bromide (DODAX, X = Cl- or Br-) in aqueous vesicle dispersions prepared by non-sonication, sonication and extrusion has been investigated using high-sensitivity differential scanning calorimetry (DSC). The transition temperature (T-m) is a function of the preparation method, amphiphile concentration, vesicle curvature and nature of the counterion. DSC thermograms for DODAB and DODAC non-sonicated vesicle dispersions exhibit a single endothermic peak at T-m roughly independent of concentration up to 10 mM. Extrusion broadens the transition peak and shifts T-m downwards. Sonication, however, broadens slightly the transition peak and tends to shift T-m upwards suggesting that extrusion and sonication form vesicles with different characteristics. DODAC always exhibits higher T-m than DODAB irrespective of the preparation method. T-m changes as follows: T-m (sonicated) greater than or equal to T-m (non-sonicated) > T-m (extruded). Hysteresis of about 7 degrees C was observed for DODAB vesicle dispersions. (C) 2000 Elsevier B.V. Ireland Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The transbilayer aminophospholipid distributions in small unilamellar vesicles comprising of phosphatidylethanolamine or its analogs (bearing modifications in the polar headgroup) and egg hosphatidylcholine were ascertained using trinitrobenzenesulfonic acid as external membrane probe. These vesicles, containing 10-30 mol% phosphatidylethanolamine or its analogs, were formed by sonication and fractionated by centrifugation. Phosphatidylethanolamine at low concentrations (10 mol%) preferentially localized in the outer monolayer. This preference appeared to be reversed at higher phosphatidylethanolamine concentrations (30 mol%). Unlike this finding, phosphatidylethanolamine bearing ethyl, phenyl and benzyl substituents at the carbon atom adjacent to the amino group distributed mainly in the outer surface irrespective of their concentrations. Similar results were obtained when the phosphate and amino groups were separated by three methylene residues. These observations suggest that the effective polar headgroup volume and/or hydrogen-bonding capacity of phospholipids are the important factors that determine their distribution in small unilamellar vesicles.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The fundamentals of this research were to exploit non-ionic surfactant technology for delivery and administration of vaccine antigens across the oral route and to gain a better understanding of vaccine trafficking. Using a newly developed method for manufacture of non-ionic surfactant vesicles (niosomes and bilosomes) lower process temperatures were adopted thus reducing antigen exposure to potentially damaging conditions. Vesicles prepared by this method offered high protection to enzymatic degradation, with only ~10 % antigen loss measured when vesicles incorporating antigen were exposed to enzyme digestion. Interestingly, when formulated using this new production method, the addition of bile salt to the vesicles offered no advantage in terms of stability within simulated gastro-intestinal conditions. Considering their ability to deliver antigen to their target site, results demonstrated that incorporation of antigen within vesicles enhanced delivery and targeting of the antigen to the Peyer's Patch, again with niosomes and bilosomes offering similar efficiency. Delivery to both the Peyer's patches and mesentery lymphatics was shown to be dose dependent at lower concentrations, with saturation kinetics applying at higher concentrations. This demonstrates that in the formulation of vaccine delivery systems, the lipid/antigen dose ratio is not only a key factor in production cost, but is equally a key factor in the kinetics of delivery and targeting of a vaccine system. © 2013 Controlled Release Society.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The fundamentals of this research were to exploit non-ionic surfactant technology for delivery and administration of vaccine antigens across the oral route and to gain a better understanding of vaccine trafficking. Using a newly developed method for manufacture of non-ionic surfactant vesicles (niosomes and bilosomes) lower process temperatures were adopted thus reducing antigen exposure to potentially damaging conditions. Vesicles prepared by this method offered high protection to enzymatic degradation, with only ~10 % antigen loss measured when vesicles incorporating antigen were exposed to enzyme digestion. Interestingly, when formulated using this new production method, the addition of bile salt to the vesicles offered no advantage in terms of stability within simulated gastro-intestinal conditions. Considering their ability to deliver antigen to their target site, results demonstrated that incorporation of antigen within vesicles enhanced delivery and targeting of the antigen to the Peyer's Patch, again with niosomes and bilosomes offering similar efficiency. Delivery to both the Peyer's patches and mesentery lymphatics was shown to be dose dependent at lower concentrations, with saturation kinetics applying at higher concentrations. This demonstrates that in the formulation of vaccine delivery systems, the lipid/antigen dose ratio is not only a key factor in production cost, but is equally a key factor in the kinetics of delivery and targeting of a vaccine system. © 2013 Controlled Release Society.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The effect of sonication on fluorescence probe solubilization in cationic vesicles of dioctadecyldimethylammonium bromide (DODAB) was investigated by steady-state fluorescence of pyrene (Py), trans-diphenylpolyenes-diphenylbutadiene (DPB), diphenylhexatriene (DPH), and their corresponding 4,4'-dialkyl derivatives 4B4A and 4H4A fluorescence probes. The data indicate that sonication affects the bilayer polarity, the melting temperature (T (m)), and the cooperativity of the melting process due to changes in vesicle morphology. The effect of temperature on the fluorescence intensity and yielding I broken vertical bar(f) and anisotropy < r > shows that the ionizable probes 4B4A and 4H4A are solubilized close to the vesicle interfaces, whereas the non-ionizable DPH and DPB are deeper in the bilayers. Py solubilization indicates that sonicated vesicles exhibit less densely packed bilayers.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The understanding of biological membranes may be improved by investigating physical properties of vesicles from natural or synthetic amphiphiles. The application of vesicles as mimetic agents depends on the knowledgment of their structure and properties. Vesicles having different curvature and size may be obtained using different preparation protocols. We have used differential scanning calorimetry (DSC) and steady-state fluorescence to investigate the gel to liquid-crystal phase transition of vesicles prepared by sonication (SUV) and non-sonication (GUV) of the synthetic dioctadecyldimethylammonium bromide (DODAB) in aqueous solution. DSC thermograms for a non-sonicated dispersion show a well-defined pre- and main transition corresponding to two narrow peaks at 36 and 45°C in the first upscan, while in a second upscan, only the main peak was observed. The sharpness of the peaks indicate a cooperative phase behavior for GUV. For a sonicated DODAB dispersion, the first upscan shows a third peak at 40.3°C, whereas for the second upscan the peaks are not well-defined, indicating a less cooperative phase behavior. Alternatively, the fluorescence quantum yield (Φ f) and the anisotropy (r) of trans, trans, trans-1-[4-(3-carboxypropyl)-phenyl]-6-[4-butylphenyl]-1,3,5-hexatriene (4H4A) and the ratio I 1/I 3 of the first to the third vibronic peaks of the pyrene emission spectrum as function of temperature are used as well to describe the phase behavior of DODAB sonicated and non-sonicated dispersions. It is in good agreement with the DSC results that the cooperativity of the thermotropic process is diminished under sonication of the DODAB dispersion, meaning that sonication changes from homogeneous to heterogeneous populations of the amphiphile aggregates. The pre- and main transitions obtained from these techniques are in fairly good accord with results from the literature.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Dioctadecyldimethylammonium bromide (DODAB) dispersions obtained by simply mixing the amphiphile in water, and by bath-sonication, were investigated by electron spin resonance (ESR) of stearic acids and their methyl ester derivatives, labeled at the 5th and 16th carbons of the acyl chain. The ESR spectra indicate that the non-sonicated dispersions are formed mainly by one population of DODAB vesicles, either in the gel (T < T-m) or in the liquid-crystalline (T > T-m) state. Around T-m there is a co-existence of the two phases, with a thermal hysteresis of about 3.2 degreesC. In sonicated DODAB dispersions, spin labels indicate two different environments even for temperatures far below T-m: one similar to that obtained with non-sonicated samples, a gel phase, and another one in the liquid-crystalline state. The fluid phase domain present below T-m could correspond to either the periphery of bilayer fragments, reported to be present in sonicated DODAB dispersions, or to high curvature vesicles. (C) 2001 Elsevier B.V. Ireland Ltd. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The local concentrations of chloride, Cl b, and bromide, Br b, in the interface of vesicles prepared with dioctadecyldimethylammonium chloride, DODAC, or bromide, DODAB, dipalmitoylphosphatidylcholine, DPPC, dimyristoylphosphatidylcholine, DMPC, and mixtures of DMPC, DPPC, and DODAC were determined by chemical trapping by analyzing product yields from spontaneous dediazoniation of vesicle-bound 2,6-dimethyl-4-hexadecylbenzenediazonium ion. The values of Cl b and Br b in DODAC and DODAB vesicles increase with vesicle size, in agreement with previous data showing that counterion dissociation decreases with vesicle size. Addition of tetramethylammonium chloride displaces bromide from the DODAB vesicular interface. The value for the selectivity constant for Br/Cl exchange at the DODAB vesicular interface obtained by chemical trapping was ∼2.0, well within values obtained for comparable amphiphiles. In vesicles of DPPC the values of Cl b were very sensitive to the nature of the cation and decreased in the order Ca 2+ > Mg 2+ > Li + > Na + > K + = Cs + = Rb + ≥ +. The effect of the cation becomes more important as temperature increases above the phase transition temperature, T m, of the lipid. The values of Cl b increased sigmoidally with the mol % of DODAC in vesicles prepared with DODAC/lipid mixtures. In sonicated vesicles prepared with DODAC and DMPC (or DPPC), the values of Cl b reach local concentrations measured for the pure amphiphile at 80 mol % DODAC. These results represent the first extensive study of local concentration of ions determined directly by chemical trapping in vesicles prepared with lipids, synthetic ampliiphiles, and their mixtures.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Sonicated vesicles of l-fatty acyl-2-w-(2-diazo-3.3,3-trifluoropropionoxy) fatty acyl sn-glycero-3-phosphorylcholines were shown recently to form intermolecular crosslinks by insertion of the photogenerated carbene into a C-H bond of a neighboring hydrocarbon chain. We now report that photolysis of multilamellar dispersions gives a second series of products in which carbene insertion is accompanied by elimination of a molecule of hydrogen fluoride. The sites of crosslinking in the latter compounds have been studied by mass spectrometry using phospholipids with varying chain lengths of the fatty acyl groups carrying the carbene precursor. The patterns observed show that the point of maximum crosslinking is consistent with the recent conclusion that in phospholipids the sn-2 fatty acyl chain trails the sn-1 chain by 2-4 atoms.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Mycobacterium tuberculosis, the causative agent of tuberculosis, survives within macrophages by altering host cell activation and by manipulating phagosomal trafficking and acidification. Part of the success of M. tuberculosis as a major human pathogen has been attributed to its cell wall, a unique structure largely comprised of mycolic acids. Trehalose 6,6′-dimycolate (TDM) is the major glycolipid component on the surface of the mycobacterial cell wall. This study examines the contribution of TDM during mycobacterial infection of murine macrophages. Virulent M. tuberculosis was chemically depleted of surface-exposed TDM using petroleum ether extraction. Compared to their native counterparts, delipidated M. tuberculosis showed similar growth in broth culture. Bone marrow-derived macrophages (BMM) or the murine macrophage-like cell line J774A.1 were infected with delipidated M. tuberculosis, and responses were compared to cells infected with native M. tuberculosis. Delipidated M. tuberculosis demonstrated significantly decreased viability in macrophages by seven days after infection. Reconstitution of delipidated organisms with pure TDM restored viability. Infection with native M. tuberculosis led to high cellular production of cytokines (IL-1β, IL-6, IL-12, and TNF-α) and chemokines (MCP-1 and MIP-1α); infection with delipidated M. tuberculosis significantly abrogated responses. Cytokine and chemokine production were restored when delipidated organisms were reconstituted with TDM. Responses were specifically induced by TDM; all measured cytokines were elicited from macrophages incubated with TDM-coated beads, while control beads coated with bovine serum albumin (BSA) did not induce cytokine production. Visualization of mycobacterial localization in J774A.1 cells using fluorescence microscopy revealed that delipidated M. tuberculosis were significantly more likely to traffic to acidic vesicles (lysosomes) than native organisms. Reconstitution with TDM restored trafficking to non-acidic vesicles. Similarly, TDM-coated beads demonstrated significantly delayed localization to acidic vesicles compared to BSA-coated beads. In summary, the interaction of TDM with macrophages may regulate the outcome of M. tuberculosis infection by influencing cellular cytokine production and intracellular localization of organisms. This research has elucidated a novel and necessary role for TDM in survival of virulent M. tuberculosis in host macrophages during in vitro infection. ^

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The aim of this research was to investigate the molecular interactions occurring in the formulation of non-ionic surfactant based vesicles composed monopalmitoyl glycerol (MPG), cholesterol (Chol) and dicetyl phosphate (DCP). In the formulation of these vesicles, the thermodynamic attributes and surfactant interactions based on molecular dynamics, Langmuir monolayer studies, differential scanning calorimetry (DSC), hot stage microscopy and thermogravimetric analysis (TGA) were investigated. Initially the melting points of the components individually, and combined at a 5:4:1 MPG:Chol:DCP weight ratio, were investigated; the results show that lower (90 C) than previously reported (120-140 C) temperatures could be adopted to produce molten surfactants for the production of niosomes. This was advantageous for surfactant stability; whilst TGA studies show that the individual components were stable to above 200 C, the 5:4:1 MPG:Chol:DCP mixture show ∼2% surfactant degradation at 140 C, compared to 0.01% was measured at 90 C. Niosomes formed at this lower temperature offered comparable characteristics to vesicles prepared using higher temperatures commonly reported in literature. In the formation of niosome vesicles, cholesterol also played a key role. Langmuir monolayer studies demonstrated that intercalation of cholesterol in the monolayer did not occur in the MPG:Chol:DCP (5:4:1 weight ratio) mixture. This suggests cholesterol may support bilayer assembly, with molecular simulation studies also demonstrating that vesicles cannot be built without the addition of cholesterol, with higher concentrations of cholesterol (5:4:1 vs 5:2:1, MPG:Chol:DCP) decreasing the time required for niosome assembly. © 2013 Elsevier B.V.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Prominin-1 (CD133) is physiologically expressed at the apical membranes of secretory (serous and mucous) and duct cells of major salivary glands. We investigated its expression in various human salivary gland lesions using two distinct anti-prominin-1 monoclonal antibodies (80B258 and AC133) applied on paraffin-embedded sections and characterized its occurrence in saliva. The 80B258 epitope was extensively expressed in adenoid cystic carcinoma, in lesser extent in acinic cell carcinoma and pleomorphic adenoma, and rarely in mucoepidermoid carcinoma. The 80B258 immunoreactivity was predominately detected at the apical membrane of tumor cells showing acinar or intercalated duct cell differentiation, which lined duct- or cyst-like structures, and in luminal secretions. It was observed on the whole cell membrane in non-luminal structures present in the vicinity of thin-walled blood vessels and hemorrhagic areas in adenoid cystic carcinoma. Of note, AC133 labeled only a subset of 80B258-positive structures. In peritumoral salivary gland tissues as well as in obstructive sialadenitis, an up-regulation of prominin-1 (both 80B258 and AC133 immunoreactivities) was observed in intercalated duct cells. In most tissues, prominin-1 was partially co-expressed with two cancer markers: carcinoembryonic antigen (CEA) and mucin-1 (MUC1). Differential centrifugation of saliva followed by immunoblotting indicated that all three markers were released in association with small membrane vesicles. Immuno-isolated prominin-1-positive vesicles contained CEA and MUC1, but also exosome-related proteins CD63, flotillin-1, flotillin-2 and the adaptor protein syntenin-1. The latter protein was shown to interact with prominin-1 as demonstrated by its co-immunoisolation. A fraction of saliva-associated prominin-1 appeared to be ubiquitinated. Collectively, our findings bring new insights into the biochemistry and trafficking of prominin-1 as well as its immunohistochemical profile in certain types of salivary gland tumors and inflammatory diseases.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Les liposomes sont des nanovecteurs polyvalents et prometteurs quant à leur utilisation dans plusieurs domaines. Il y a une décennie, un nouveau type de liposome constitué d’amphiphiles monoalkylés et de stérols est né fortuitement dans notre groupe. Ils sont nommés Stérosomes puisqu’ils contiennent une grande proportion de stérols, entre 50 et 70 mol %. Les objectifs de cette thèse sont de développer de nouvelles formulations de Stérosomes ayant des caractéristiques spécifiques et d’acquérir une compréhension plus profonde des règles physicochimiques qui dictent leur comportement de phase. Nous avons spécifiquement examiné le rôle de motifs moléculaires des stérols, de la charge interfaciale et de la capacité à former des liaisons H dans les interactions intermoléculaires menant à l’autoassemblage. Le comportement de phase a été caractérisé par calorimétrie différentielle à balayage (DSC), par spectroscopie infrarouge (IR) et par spectroscopie de résonance magnétique nucléaire du deutérium (²H NMR). Premièrement, nous avons établi certaines corrélations entre la structure des stérols, leur tendance à former des bicouches fluides en présence d'amphiphile monoalkylé et la perméabilité des grandes vésicules unilamellaires (LUV) formées. La nature des stérols module les propriétés de mélange avec de l’acide palmitique (PA). Les stérols portant une chaîne volumineuse en position C17 sont moins aptes à induire des bicouches fluides que ceux qui ont une chaîne plus simple, comme celle du cholestérol. Un grand ordre de la chaîne alkyle de PA est un effet commun à tous les stérols investigués. Il a été démontré que la perméabilité des LUV peut être contrôlée en utilisant des stérols différents. Cependant, ces stérols n’ont aucun impact significatif sur la sensibilité des Stérosomes au pH. Afin de créer des liposomes qui sont sensibles au pH et qui ont une charge positive à la surface, des Stérosomes composés de stéarylamine et de cholestérol (Chol) ont été conçus et caractérisés. Il a été conclu que l’état de protonation de l’amine, dans ce travail, ou du groupe carboxylique, dans un travail précédent, confère une sensibilité au pH et détermine la charge à la surface du liposome. Les premiers Stérosomes complètement neutres ont été fabriqués en utilisant un réseau de fortes liaisons H intermoléculaires. Le groupe sulfoxyde est capable de former de fortes liaisons H avec le cholestérol et les molécules d’eau. Une bicouche fluide métastable a été obtenue, à la température de la pièce, à partir d'un mélange équimolaire d’octadécyl méthyl sulfoxyde (OMSO) et de Chol. Ce comportement distinct a permis d’extruder le mélange pour former des LUV à la température de la pièce. Après 30 h, le temps de vie de la phase métastable, des Stérosomes stables et imperméables existaient toujours sous une forme solide. Un diagramme de température-composition a été proposé afin de résumer le comportement de phase des mélanges d’OMSO/Chol. Finalement, nous avons élaboré des Stérosomes furtifs en incorporant du polyéthylène glycol (PEG) avec une ancre de cholestérol (PEG-Chol) à l’interface de Stérosomes de PA/Chol. Jusqu’à 20 mol % de PEG-Chol peut être introduit sans perturber la structure de la bicouche. La présence du PEG-Chol n’a aucun impact significatif sur la perméabilité de la LUV. L'encapsulation active de la doxorubicine, un médicament contre le cancer, a été réalisée malgré la faible perméabilité de ces LUV et la présence du PEG à l’interface. L’inclusion de PEG a modifié considérablement les propriétés de l’interface et a diminué la libération induite par la variation de pH observée avec des LUV nues de PA/Chol. Cette formulation inédite est potentiellement utile pour l’administration intraveineuse de médicaments.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Nous démontrons qu'il est possible de former des bicouches fluides non phospholipides en milieu aqueux avec un mélange d'acide palmitique (PA), cholestérol (Chol) et sulfate de cholestérol (Schol) avec une proportion molaire de 30/28/42. Ces liposomes non phospholipidiques peuvent maintenir un gradient de pH (pHinterne 8 / pHexterne 6) sur une période 100 fois plus longue que les liposomes faits de 1-palmitoyl-2-oléoyl-sn-glycéro-3-phosphocholine (POPC) et de cholestérol (60/40 mol/mol). De plus, ces LUV non phospholipidiques protègent l'acide ascorbique d'un milieu oxydant (1 mM de fer (III)). Une fois piégé dans les liposomes, l'acide ascorbique présente une vitesse de dégradation similaire à celle obtenue en l'absence de fer(III). Ces performances illustrent la perméabilité exceptionnellement limitée de ces liposomes, ce qui implique qu'ils peuvent présenter des avantages comme nanocontenants pour certaines applications. D'autre part, des vésicules unilamellaires géantes (GUV pour Giant Unilamellar Vesicles) ont été formées à partir d'un mélange d'acide palmitique et de cholestérol (30/70 mol/mol). Ces GUV sont stables sur l'échelle de temps de semaines, elles ne s'agrègent pas et elles sont sensibles au pH. Afin d'établir la formation des GUV, l'imagerie par microscopie confocale à balayage laser a été utilisée. Deux sondes fluorescentes ont été utilisées: le rouge du Nile, une sonde hydrophobe qui s'insère dans le cœur hydrophobe des bicouches lipidiques, et la calcéine, une sonde hydrophile qui a été emprisonné dans le réservoir interne des GUV. Cette approche a permis l'observation des parois des GUV ainsi que de leur contenu. Ces résultats montrent la possibilité de former de nouveaux microcontenants à partir d'un mélange d'un amphiphile monoalkylé et de stérol.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Amphotericin B (AmB) is widely used in the treatment of systemic fungal infections, despite its toxic effects. Nephrotoxicity, ascribed as the most serious toxic effect, has been related to the state of aggregation of the antibiotic. In search of the increase in AmB antifungal activity associated with low toxicity, several AmB-amphiphile formulations have been proposed. This work focuses on the structural characterization of a specific AmB formulation: AmB associated with sonicated dioctadecyl dimethylammonium bromide (DODAB) aggregates. Here, it was confirmed that sonicated DODAB dispersion is constituted by DODAB bicelles, and that monomeric AmB is much more soluble in bicelles than in DODAB vesicles. A new optical parameter is proposed for the estimation of the relative amount of amphiphile-bound monomeric AmB. With theoretical simulations of the spectra of spin labels incorporated in DODAB bicelles it was possible to prove that monomeric AmB binds preferentially to lipids located at the edges of DODAB bicelles, rigidifying them, and decreasing the polarity of the region. That special binding of monomeric AmB along the borders of bicelles, where the lipids are highly disorganized, could be used in the formulation of other carriers for the antibiotic, including mixtures of natural lipids which are known to form bicelles. (C) 2011 Elsevier B.V. All rights reserved.