943 resultados para non-central chi-square distribution


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, we consider the non-central chi-square chart with two stage samplings. During the first stage, one item of the sample is inspected and, depending on the result, the sampling is either interrupted, or it goes on to the second stage, where the remaining sample items are inspected and the non-central chi-square statistic is computed. The proposed chart is not only more sensitive than the joint (X) over bar and R charts, but operationally simpler too, particularly when appropriate devices, such as go-no-go gauges, can be used to decide if the sampling should go on to the second stage or not. (c) 2004 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Traditionally, an (X) over bar -chart is used to control the process mean and an R-chart to control the process variance. However, these charts are not sensitive to small changes in process parameters. A good alternative to these charts is the exponentially weighted moving average (EWMA) control chart for controlling the process mean and variability, which is very effective in detecting small process disturbances. In this paper, we propose a single chart that is based on the non-central chi-square statistic, which is more effective than the joint (X) over bar and R charts in detecting assignable cause(s) that change the process mean and/or increase variability. It is also shown that the EWMA control chart based on a non-central chi-square statistic is more effective in detecting both increases and decreases in mean and/or variability.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Throughout this article, it is assumed that the no-central chi-square chart with two stage samplings (TSS Chisquare chart) is employed to monitor a process where the observations from the quality characteristic of interest X are independent and identically normally distributed with mean μ and variance σ2. The process is considered to start with the mean and the variance on target (μ = μ0; σ2 = σ0 2), but at some random time in the future an assignable cause shifts the mean from μ0 to μ1 = μ0 ± δσ0, δ >0 and/or increases the variance from σ0 2 to σ1 2 = γ2σ0 2, γ > 1. Before the assignable cause occurrence, the process is considered to be in a state of statistical control (defined by the in-control state). Similar to the Shewhart charts, samples of size n 0+ 1 are taken from the process at regular time intervals. The samplings are performed in two stages. At the first stage, the first item of the i-th sample is inspected. If its X value, say Xil, is close to the target value (|Xil-μ0|< w0σ 0, w0>0), then the sampling is interrupted. Otherwise, at the second stage, the remaining n0 items are inspected and the following statistic is computed. Wt = Σj=2n 0+1(Xij - μ0 + ξiσ 0)2 i = 1,2 Let d be a positive constant then ξ, =d if Xil > 0 ; otherwise ξi =-d. A signal is given at sample i if |Xil-μ0| > w0σ 0 and W1 > knia:tl, where kChi is the factor used in determining the upper control limit for the non-central chi-square chart. If devices such as go and no-go gauges can be considered, then measurements are not required except when the sampling goes to the second stage. Let P be the probability of deciding that the process is in control and P 1, i=1,2, be the probability of deciding that the process is in control at stage / of the sampling procedure. Thus P = P1 + P 2 - P1P2, P1 = Pr[μ0 - w0σ0 ≤ X ≤ μ0+ w 0σ0] P2=Pr[W ≤ kChi σ0 2], (3) During the in-control period, W / σ0 2 is distributed as a non-central chi-square distribution with n0 degrees of freedom and a non-centrality parameter λ0 = n0d2, i.e. W / σ0 2 - xn0 22 (λ0) During the out-of-control period, W / σ1 2 is distributed as a non-central chi-square distribution with n0 degrees of freedom and a non-centrality parameter λ1 = n0(δ + ξ)2 / γ2 The effectiveness of a control chart in detecting a process change can be measured by the average run length (ARL), which is the speed with which a control chart detects process shifts. The ARL for the proposed chart is easily determined because in this case, the number of samples before a signal is a geometrically distributed random variable with parameter 1-P, that is, ARL = I /(1-P). It is shown that the performance of the proposed chart is better than the joint X̄ and R charts, Furthermore, if the TSS Chi-square chart is used for monitoring diameters, volumes, weights, etc., then appropriate devices, such as go-no-go gauges can be used to decide if the sampling should go to the second stage or not. When the process is stable, and the joint X̄ and R charts are in use, the monitoring becomes monotonous because rarely an X̄ or R value fall outside the control limits. The natural consequence is the user to pay less and less attention to the steps required to obtain the X̄ and R value. In some cases, this lack of attention can result in serious mistakes. The TSS Chi-square chart has the advantage that most of the samplings are interrupted, consequently, most of the time the user will be working with attributes. Our experience shows that the inspection of one item by attribute is much less monotonous than measuring four or five items at each sampling.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

"NAVWEPS report 7770. NOTS TP 2749."

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Traditionally, an (X) over bar chart is used to control the process mean and an R chart is used to control the process variance. However, these charts are not sensitive to small changes in the process parameters. The adaptive ($) over bar and R charts might be considered if the aim is to detect small disturbances. Due to the statistical character of the joint (X) over bar and R charts with fixed or adaptive parameters, they are not reliable in identifing the nature of the disturbance, whether it is one that shifts the process mean, increases the process variance, or leads to a combination of both effects. In practice, the speed with which the control charts detect process changes may be more important than their ability in identifying the nature of the change. Under these circumstances, it seems to be advantageous to consider a single chart, based on only one statistic, to simultaneously monitor the process mean and variance. In this paper, we propose the adaptive non-central chi-square statistic chart. This new chart is more effective than the adaptive (X) over bar and R charts in detecting disturbances that shift the process mean, increase the process variance, or lead to a combination of both effects. Copyright (c) 2006 John Wiley & Sons, Ltd.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A family of scaling corrections aimed to improve the chi-square approximation of goodness-of-fit test statistics in small samples, large models, and nonnormal data was proposed in Satorra and Bentler (1994). For structural equations models, Satorra-Bentler's (SB) scaling corrections are available in standard computer software. Often, however, the interest is not on the overall fit of a model, but on a test of the restrictions that a null model say ${\cal M}_0$ implies on a less restricted one ${\cal M}_1$. If $T_0$ and $T_1$ denote the goodness-of-fit test statistics associated to ${\cal M}_0$ and ${\cal M}_1$, respectively, then typically the difference $T_d = T_0 - T_1$ is used as a chi-square test statistic with degrees of freedom equal to the difference on the number of independent parameters estimated under the models ${\cal M}_0$ and ${\cal M}_1$. As in the case of the goodness-of-fit test, it is of interest to scale the statistic $T_d$ in order to improve its chi-square approximation in realistic, i.e., nonasymptotic and nonnormal, applications. In a recent paper, Satorra (1999) shows that the difference between two Satorra-Bentler scaled test statistics for overall model fit does not yield the correct SB scaled difference test statistic. Satorra developed an expression that permits scaling the difference test statistic, but his formula has some practical limitations, since it requires heavy computations that are notavailable in standard computer software. The purpose of the present paper is to provide an easy way to compute the scaled difference chi-square statistic from the scaled goodness-of-fit test statistics of models ${\cal M}_0$ and ${\cal M}_1$. A Monte Carlo study is provided to illustrate the performance of the competing statistics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Swain corrects the chi-square overidentification test (i.e., likelihood ratio test of fit) for structural equation models whethr with or without latent variables. The chi-square statistic is asymptotically correct; however, it does not behave as expected in small samples and/or when the model is complex (cf. Herzog, Boomsma, & Reinecke, 2007). Thus, particularly in situations where the ratio of sample size (n) to the number of parameters estimated (p) is relatively small (i.e., the p to n ratio is large), the chi-square test will tend to overreject correctly specified models. To obtain a closer approximation to the distribution of the chi-square statistic, Swain (1975) developed a correction; this scaling factor, which converges to 1 asymptotically, is multiplied with the chi-square statistic. The correction better approximates the chi-square distribution resulting in more appropriate Type 1 reject error rates (see Herzog & Boomsma, 2009; Herzog, et al., 2007).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

When the data are counts or the frequencies of particular events and can be expressed as a contingency table, then they can be analysed using the chi-square distribution. When applied to a 2 x 2 table, the test is approximate and care needs to be taken in analysing tables when the expected frequencies are small either by applying Yate’s correction or by using Fisher’s exact test. Larger contingency tables can also be analysed using this method. Note that it is a serious statistical error to use any of these tests on measurement data!

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this article, we propose new control charts for monitoring the mean vector and the covariance matrix of bivariate processes. The traditional tools used for this purpose are the T (2) and the |S| charts. However, these charts have two drawbacks: (1) the T (2) and the |S| statistics are not easy to compute, and (2) after a signal, they do not distinguish the variable affected by the assignable cause. As an alternative to (1), we propose the MVMAX chart, which only requires the computation of sample means and sample variances. As an alternative to (2), we propose the joint use of two charts based on the non-central chi-square statistic (NCS statistic), named as the NCS charts. Once the NCS charts signal, the user can immediately identify the out-of-control variable. In general, the synthetic MVMAX chart is faster than the NCS charts and the joint T (2) and |S| charts in signaling processes disturbances.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this article, we consider the synthetic control chart with two-stage sampling (SyTS chart) to control the process mean and variance. During the first stage, one item of the sample is inspected; if its value X, is close to the target value of the process mean, then the sampling is interrupted. Otherwise, the sampling goes on to the second stage, where the remaining items are inspected and the statistic T = Sigma [x(i) - mu(0) + xi sigma(0)](2) is computed taking into account all items of the sample. The design parameter is function of X-1. When the statistic T is larger than a specified value, the sample is classified as nonconforming. According to the synthetic procedure, the signal is based on Conforming Run Length (CRL). The CRL is the number of samples taken from the process since the previous nonconforming sample until the occurrence of the next nonconforming sample. If the CRL is sufficiently small, then a signal is generated. A comparative study shows that the SyTS chart and the joint X and S charts with double sampling are very similar in performance. However, from the practical viewpoint, the SyTS chart is more convenient to administer than the joint charts.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Purpose - The aim of this paper is to present a synthetic chart based on the non-central chi-square statistic that is operationally simpler and more effective than the joint X̄ and R chart in detecting assignable cause(s). This chart will assist in identifying which (mean or variance) changed due to the occurrence of the assignable causes. Design/methodology/approach - The approach used is based on the non-central chi-square statistic and the steady-state average run length (ARL) of the developed chart is evaluated using a Markov chain model. Findings - The proposed chart always detects process disturbances faster than the joint X̄ and R charts. The developed chart can monitor the process instead of looking at two charts separately. Originality/value - The most important advantage of using the proposed chart is that practitioners can monitor the process by looking at only one chart instead of looking at two charts separately. © Emerald Group Publishing Limted.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

"This work was supported by the Office of Naval Reseaarch under Contract Nonr. 404(16)."

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND The etiology of Ulcerative Colitis (UC) and Crohn's Disease (CD), considered together as Inflammatory Bowel Diseases (IBD), involves environmental and genetic factors. Although some genes are already known, the genetics underlying these diseases is complex and new candidates are continuously emerging. The CD209 gene is located in a region linked previously to IBD and a CD209 functional polymorphism (rs4804803) has been associated to other inflammatory conditions. Our aim was to study the potential involvement of this CD209 variant in IBD susceptibility. METHODS We performed a case-control study with 515 CD patients, 497 UC patients and 731 healthy controls, all of them white Spaniards. Samples were typed for the CD209 single nucleotide polymorphism (SNP) rs4804803 by TaqMan technology. Frequency comparisons were performed using chi2 tests. RESULTS No association between CD209 and UC or CD was observed initially. However, stratification of UC patients by HLA-DR3 status, a strong protective allele, showed that carriage of the CD209_G allele could increase susceptibility in the subgroup of HLA-DR3-positive individuals (p = 0.03 OR = 1.77 95% CI 1.04-3.02, vs. controls). CONCLUSION A functional variant in the CD209 gene, rs4804803, does not seem to be influencing Crohn's disease susceptibility. However, it could be involved in the etiology or pathology of Ulcerative Colitis in HLA-DR3-positive individuals but further studies are necessary.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

OBJECTIVES: To determine the prevalence, predictors, and clinical significance of electrographic seizures (ESz) and other continuous electroencephalographic monitoring findings in critically ill patients with central nervous system infections. DESIGN: Retrospective cohort study. SETTING: Eighteen-bed neurocritical care unit. PATIENTS: We identified 42 consecutive patients with primary central nervous system infection (viral, 27 patients [64%]; bacterial, 8 patients [18%]; and fungal or parasitic, 7 patients [17%]) who underwent continuous electroencephalographic monitoring between January 1, 1996, and February 28, 2007. MAIN OUTCOME MEASURES: Presence of ESz or periodic epileptiform discharges (PEDs). RESULTS: Electrographic seizures were recorded in 14 patients (33%), and PEDs were recorded in 17 patients (40%). Twenty patients (48%) had either PEDs or ESz. Of the 14 patients with ESz, only 5 (36%) had a clinical correlate. Periodic epileptiform discharges (odds ratio=13.4; P=.001) and viral cause (odds ratio=13.0; P=.02) were independently associated with ESz. Both ESz (odds ratio=5.9; P=.02) and PEDs (odds ratio=6.1; P=.01) were independently associated with poor outcome at discharge (severe disability, vegetative state, or death). CONCLUSIONS: In patients with central nervous system infections undergoing continuous electroencephalographic monitoring, ESz and/or PEDs were frequent, occurring in 48% of our cohort. More than half of the ESz had no clinical correlate. Both ESz and PEDs were independently associated with poor outcome. Additional studies are needed to determine whether prevention or treatment of these electrographic findings improves outcome.