990 resultados para non-REM sleep
Resumo:
To test whether mental activities collected from non-REM sleep are influenced by REM sleep, we suppressed REM sleep using clomipramine 50mg (an antidepressant) or placebo in the evening, in a double blind cross-over design, in 11 healthy young men. Subjects were awakened every hour and asked about their mental activity. The marked (81%, range 39-98%) REM-sleep suppression induced by clomipramine did not substantially affect any aspects of dream recall (report length, complexity, bizarreness, pleasantness and self-perception of dream or thought-like mentation). Since long, complex and bizarre dreams persist even after suppressing REM sleep either partially or totally, it suggests that the generation of mental activity during sleep is independent of sleep stage.
Resumo:
STUDY OBJECTIVE: In healthy subjects, arousability to inspiratory resistive loading is greater during rapid eye movement (REM) sleep compared with non-REM (NREM) sleep but is poorest in REM sleep in patients with sleep apnea. We therefore examined the hypothesis that sleep fragmentation impairs arousability, especially from REM sleep. DESIGN: Two blocks of 3 polysomnographies (separated by at least 1 week) were performed randomly. An inspiratory-loaded night followed either 2 undisturbed control nights (LN(C)) or 2 acoustically fragmented nights (LN(F)) SETTING: Sleep laboratory. PARTICIPANTS: Sixteen healthy men aged 20 to 29 years. INTERVENTIONS: In both loaded nights, an inspiratory resistive load was added via a valved facemask every 2 minutes during sleep and turned off either when arousal occurred or after 2 minutes. MEASUREMENTS AND RESULTS: During LN(F), arousability remained significantly greater in REM sleep (71% aroused within 2 minutes) compared with stage 2 (29%) or stage 3/4 (16%) sleep. After sleep fragmentation, arousability was decreased in stage 2 sleep (LN(F): 29%; LN(C): 38%; p < .05) and low in early REM sleep, increasing across the night (p < .01). In stage 3/4 sleep, neither an attenuation nor a change across the night was seen after sleep fragmentation. CONCLUSIONS: Mild sleep fragmentation is already sufficient to attenuate arousability in stage 2 sleep and to decrease arousability in early, compared with late, REM sleep. This means that sleep fragmentation affects the arousal response to increasing resistance and that the effects are different in stage 2 and REM sleep. The biologic reason for this increase in the arousal response in REM sleep across the night is not clear.
Resumo:
Endothelial function typically precedes clinical manifestations of cardiovascular disease and provides a potential mechanism for the associations observed between cardiovascular disease and sleep quality. This study examined how subjective and objective indicators of sleep quality relate to endothelial function, as measured by brachial artery flow-mediated dilation (FMD). In a clinical research centre, 100 non-shift working adults (mean age: 36 years) completed FMD testing and the Pittsburgh Sleep Quality Index, along with a polysomnography assessment to obtain the following measures: slow wave sleep, percentage rapid eye movement (REM) sleep, REM sleep latency, total arousal index, total sleep time, wake after sleep onset, sleep efficiency and apnea-hypopnea index. Bivariate correlations and follow-up multiple regressions examined how FMD related to subjective (i.e., Pittsburgh Sleep Quality Index scores) and objective (i.e., polysomnography-derived) indicators of sleep quality. After FMD showed bivariate correlations with Pittsburgh Sleep Quality Index scores, percentage REM sleep and REM latency, further examination with separate regression models indicated that these associations remained significant after adjustments for sex, age, race, hypertension, body mass index, apnea-hypopnea index, smoking and income (Ps < 0.05). Specifically, as FMD decreased, scores on the Pittsburgh Sleep Quality Index increased (indicating decreased subjective sleep quality) and percentage REM sleep decreased, while REM sleep latency increased (Ps < 0.05). Poorer subjective sleep quality and adverse changes in REM sleep were associated with diminished vasodilation, which could link sleep disturbances to cardiovascular disease.
Resumo:
Study Objectives. The use of mouse models in sleep apnea research is limited by the belief that central (CSA) but not obstructive sleep apneas (OSA) occur in rodents. With this study we wanted to develop a protocol to look for the presence of OSAs in wild-type mice and, then, to apply it to a mouse model of Down Syndrome (DS), a human pathology characterized by a high incidence of OSAs. Methods. Nine C57Bl/6J wild-type mice were implanted with electrodes for electroencephalography (EEG), neck electromyography (nEMG), diaphragmatic activity (DIA) and then placed in a whole-body-plethysmographic (WBP) chamber for 8h during the resting (light) phase to simultaneously record sleep and breathing activity. The concomitant analysis of WBP and DIA signals allowed the discrimination between CSA and OSA. The same protocol was then applied to 12 Ts65Dn mice (a validated model of DS) and 14 euploid controls. Results. OSAs represented about half of the apneic events recorded during rapid-eye-movement sleep (REMS) in each experimental group while almost only CSAs were found during non-REMS. Ts65Dn mice had similar rate of apneic events than euploid controls but a significantly higher occurrence of OSAs during REMS. Conclusions. We demonstrated for the first time that mice physiologically exhibit both CSAs and OSAs and that the latter are more prevalent in the Ts65Dn mouse model of DS. These findings indicate that mice can be used as a valid tool to accelerate the comprehension of the pathophysiology of all kind of sleep apnea and for the development of new therapeutical approaches to contrast these respiratory disorders.
Resumo:
Study Objectives: Interspecific variation in sleep measured in captivity correlates with various physiological and environmental factors, including estimates of predation risk in the wild. However, it remains unclear whether prior comparative studies have been confounded by the captive recording environment. Herein we examine the impact of predation pressure on sleep in sloths living in the wild. Design: Comparison of two closely related sloth species, one exposed to predation and one free from predation. Setting: Panamanian mainland rainforest (predators present) and island mangrove (predators absent). Participants: Mainland (Bradypus variegatus, 5 males and 4 females) and island (Bradypus pygmaeus, 6 males) sloths. Interventions: None. Measurements and Results: EEG and EMG activity were recorded using a miniature data logger. Although both species spent between 9 and 10 hours per day sleeping, the mainland sloths showed a preference for sleeping at night, whereas island sloths showed no preference for sleeping during the day or night. EEG activity during NREM sleep showed lower low-frequency power, and increased spindle and higher frequency power in island sloths when compared to mainland sloths. Conclusions: In sloths sleeping in the wild, predation pressure influenced the timing of sleep, but not the amount of time spent asleep. The preference for sleeping at night in mainland sloths may be a strategy to avoid detection by nocturnal cats. The pronounced differences in the NREM sleep EEG spectrum remain unexplained, but might be related to genetic or environmental factors.
Resumo:
OBJECTIVE: Positive occipital sharp transients of sleep (POSTS) are considered a normal variant seen in non-REM sleep; their asymmetrical presentation and relationship with EEG abnormalities have received scarce attention to date. We analyzed these features in a large prospective EEG recordings' sample. METHODS: In this case-control study, over 6 months we collected consecutive patients showing POSTS on their EEG. They were matched with consecutive control subjects (two for each). Demographical data, asymmetries for POSTS and alpha activity, and lateralized or diffuse occurrence of EEG abnormalities (slowing, epileptiform transients) were compared among these two groups. RESULTS: Out of 1254 EEG studies, 102 (8%) patients showed POSTS. They were younger (p=0.031), and more likely to show EEG abnormalities (p=0.008) - including epileptiform transients (p=0.002) - than controls. However, this relationship was influenced by age and recording length. Thirty nine POSTS recordings (38%) had a consistent amplitude asymmetry, but this was not associated with specific EEG abnormalities or alpha asymmetry. CONCLUSION: POSTS are a normal EEG variant, occurring in less than 10% of unselected EEG recordings, mostly in younger adults, without gender predominance. Amplitude asymmetries are found in over one third of subjects. SIGNIFICANCE: POSTS asymmetry, as opposed to other sleep transients, should be considered as normal.
Resumo:
The function of sleep remains unknown. To gain insight into the function of sleep in natural conditions, I assessed variation in sleep architecture and its link with fitness-related phenotypic traits. I considered melanin-based coloration because its underlying genetic basis is very well known giving an opportunity to examine whether some genes pleiotropically regulate both coloration and sleep. The melanocortin system is known to generate covariation between melanin-based coloration and other phenotypes like behaviour, physiology and life history traits. I investigated whether this system of genes could participate in the co-expression of coloration and sleep. I carried out a study with nestling barn owls (Tyto alba) in order to tackle the potential link between variation in color traits and the ontogeny of sleep under natural conditions. For this I established a suitable method for recording the brain activity (electroencephalogram) of owls in nature. Birds are especially interesting, because they convergently evolved sleep states similar to those exhibited by mammals. As in mammals, I found that in owlets time spent in rapid eye movement (REM) sleep declines with age, a relationship thought to eflect developmental changes in the brain. Thus this developmental trajectory appears to reflect a fundamental feature of sleep. Additionally, I discovered an association between a gene involved in melanism expressed in the feather follicles (proprotein convertase subtilisin/kexin type 2, PCSK2) and the age-related changes in sleep in the brain. Nestlings with higher expression levels of PCSK2 showed a more precocial pattern of sleep development and a higher degree of melanin-based coloration compared to nestlings with lower PCSK2 expression. Also sleep architecture and the development of rhythmicity in brain and physical activity was related to plumage traits of the nestlings and their biological parents. This pattern during ontogeny might reflect differences in life l history strategies, antipredator behaviour and developmental pace. Therefore, differently colored individuals may differentially deal with trade-offs between the costs and benefits of sleep which in turn lead to differences in brain organization and ultimately fitness. These results should stimulate evolutionary biologists to consider sleep as a major life history trait. Résumé La fonction du sommeil reste inconnue. Afin d'acquérir une meilleur compréhension de la fonction du sommeil dans les conditions naturelles, j'ai analysé la variation dans l'architecture du sommeil et son lien avec d'autres traits phénotypiques liés au succès reproducteur (fitness). J'ai choisi et examiné la coloration mélanique, car ses bases génétiques sont bien connues et il est ainsi possible d'étudier si certains gènes, de façon pléiotropique régulent à la fois la coloration et le sommeil. J'ai exploré si ce système génétique était impliqué dans la co-expression de la coloration et du sommeil. J'ai effectué mon étude sur des poussins de chouette effraie (Tyto alba) en condition naturelle, pour rechercher ce lien potentiel entre la variation de la coloration et l'ontogenèse du sommeil. Dans ce but, j'ai établi une méthodologie permettant d'enregistrer l'activité cérébrale (électroencéphalogramme) des chouettes dans la nature. Les oiseaux sont particulièrement intéressants car ils ont développé, par évolution convergente, des phases de sommeil similaires à celles des mammifères. De manière semblable à ce qui a été montré chez les mammifères, j'ai découvert que le temps passé dans le sommeil paradoxal diminue avec l'âge des poussins. On pense que ceci est dû aux changements développementaux au niveau du cerveau. Cette trajectoire développementale semble refléter une caractéristique fondamentale du sommeil. J'ai également découvert une association entre l'un des gènes impliqué dans le mélanisme, exprimé dans les follicules plumeux (proprotein convertase subtilisin/kexin type 2, PCSK2), et les changements dans la structure du sommeil avec l'âge. Les poussins ayant un niveau d'expression génétique élevé de la PCSK2 présentent une structure du sommeil plus précoce et un taux de coloration dû à la mélanine plus élevé que des poussins avec un niveau d'expression moindre de la PCSK2. L'architecture du sommeil et le développement de la rythmicité dans le cerveau ainsi que l'activité physique sont également liés à la coloration des plumes des poussins et pourraient ainsi refléter des différences de stratégies d'histoire de vie, de comportements anti-prédateur et de vitesses développementales. Ainsi, des individus de coloration différente sembleraient traiter différemment les coûts et les bénéfices du sommeil, ce qui aurait des conséquences sur l'organisation cérébrale et pour finir, sur le succès reproducteur. Ces résultats devraient encourager les biologistes évolutionnistes à considérer le sommeil comme un important trait d'histoire de vie. Zusammenfassung Die Funktion von Schlaf ist noch unbekannt. Um mehr Einsicht in diese unter natürlichen Bedingungen zu bekommen, habe ich die Variation in der Schlafarchitektur und die Verknüpfung mit phänotypischen Merkmalen, die mit der Fitness zusammenhängen, studiert. Ich habe mir melanin-basierte Färbung angesehen, da die zugrunde liegende genetische Basis bekannt ist und somit die Möglichkeit gegeben ist, zu untersuchen, ob einige Gene beides regulieren, Färbung und Schlaf. Das melanocortin System generiert eine Kovariation zwischen melanin-basierter Färbung und anderen phänotypischer Merkmale wie Verhalten, Physiologie und Überlebensstrategien. Ich habe untersucht, ob dieses Gensystem an einer gleichzeitigen Steuerung von Färbung und Schlaf beteiligt ist. Dazu habe ich Schleiereulen (Tyto alba) studiert um einen möglichen Zusammenhang zwischen der Variation in der Pigmentierung und der Entwicklung des Schlafs unter natürlichen Bedingungen zu entdecken. Für diese Studie entwickelte ich eine Methode um die Gehirnaktivität (Elektroenzephalogramm) bei Eulen in der Natur aufzunehmen. Vögel sind besonders interessant, da sie die gleichen Schlafstadien aufweisen wie Säugetiere und diese unabhängig konvergent entwickelt haben. Genauso wie bei Säugetieren nahm die Dauer des sogenannten ,,rapid eye movement" (REM) - Schlafes mit zunehmendem Alter ab. Es wird angenommen, dass dieser Zusammenhang die Entwicklung des Gehirns widerspiegelt. Daher scheint dieses Entwicklungsmuster ein fundamentaler Aspekt von Schlaf zu sein. Zusätzlich entdeckte ich einen Zusammenhang zwischen der Aktivität eines Gens in den Federfollikeln (proprotein convertase subtilisin/kexin type 2, PCSK2), das für die Ausprägung schwarzer Punkte auf den Federn der Eulen verantwortlich ist, und den altersabhängigen Änderungen im Schlafmuster im Gehirn. Küken mit höherer Aktivität von PCSK2 zeigten eine frühreifere Schlafentwicklung und eine dunklere Färbung als Küken mit niedriger PCSK2 Aktivität. Die Architekture des Schlafes und die Entwicklung der Rhythmik im Gehirn und die der physischen Aktivität ist mit der Färbung des Gefieders von den Küken und ihren Eltern verknüpft. Dieses Muster während der Entwicklung kann Unterschiede in Überlebensstrategien, Feindabwehrverhalten und in der Entwicklungsgeschwindigkeit reflektieren. Unterschiedlich gefärbte Individuen könnten unterschiedliche Strategien haben um zwischen den Kosten und Nutzen von Schlaf zu entscheiden, was zu Unterschieden in der Gehirnstruktur führen kann und letztendlich zur Fitness. Diese Ergebnisse sollten Evolutionsbiologen stimulieren Schlaf als einen wichtigen Bestandteil des Lebens zu behandeln.
Resumo:
Understanding the function of variation in sleep requires studies in the natural ecological conditions in which sleep evolved. Sleep has an impact on individual performance and hence may integrate the costs and benefits of investing in processes that are sensitive to sleep, such as immunity or coping with stress. Because dark and pale melanic animals differentially regulate energy homeostasis, immunity and stress hormone levels, the amount and/or organization of sleep may covary with melanin-based colour. We show here that wild, cross-fostered nestling barn owls (Tyto alba) born from mothers displaying more black spots had shorter non-REM (rapid eye movement) sleep bouts, a shorter latency until the occurrence of REM sleep after a bout of wakefulness and more wakefulness bouts. In male nestlings, the same sleep traits also correlated with their own level of spotting. Because heavily spotted male nestlings and the offspring of heavily spotted biological mothers switched sleep-wakefulness states more frequently, we propose the hypothesis that they could be also behaviourally more vigilant. Accordingly, nestlings from mothers displaying many black spots looked more often towards the nest entrance where their parents bring food and towards their sibling against whom they compete. Owlets from heavily spotted mothers might invest more in vigilance, thereby possibly increasing associated costs due to sleep fragmentation. We conclude that different strategies of the regulation of brain activity have evolved and are correlated with melanin-based coloration.
Resumo:
Many effects of nitric oxide (NO) are mediated by the activation of guanylyl cyclases and subsequent production of the second messenger cyclic guanosine-3',5'-monophosphate (cGMP). cGMP activates cGMP-dependent protein kinases (PRKGs), which can therefore be considered downstream effectors of NO signaling. Since NO is thought to be involved in the regulation of both sleep and circadian rhythms, we analyzed these two processes in mice deficient for cGMP-dependent protein kinase type I (PRKG1) in the brain. Prkg1 mutant mice showed a strikingly altered distribution of sleep and wakefulness over the 24 hours of a day as well as reductions in rapid-eye-movement sleep (REMS) duration and in non-REM sleep (NREMS) consolidation, and their ability to sustain waking episodes was compromised. Furthermore, they displayed a drastic decrease in electroencephalogram (EEG) power in the delta frequency range (1-4 Hz) under baseline conditions, which could be normalized after sleep deprivation. In line with the re-distribution of sleep and wakefulness, the analysis of wheel-running and drinking activity revealed more rest bouts during the activity phase and a higher percentage of daytime activity in mutant animals. No changes were observed in internal period length and phase-shifting properties of the circadian clock while chi-squared periodogram amplitude was significantly reduced, hinting at a less robust oscillator. These results indicate that PRKG1 might be involved in the stabilization and output strength of the circadian oscillator in mice. Moreover, PRKG1 deficiency results in an aberrant pattern, and consequently a reduced quality, of sleep and wakefulness, possibly due to a decreased wake-promoting output of the circadian system impinging upon sleep.
Resumo:
Rapid eye movement (REM) sleep deprivation induces several behavioral changes. Among these, a decrease in yawning behavior produced by low doses of cholinergic agonists is observed which indicates a change in brain cholinergic neurotransmission after REM sleep deprivation. Acetylcholinesterase (Achase) controls acetylcholine (Ach) availability in the synaptic cleft. Therefore, altered Achase activity may lead to a change in Ach availability at the receptor level which, in turn, may result in modification of cholinergic neurotransmission. To determine if REM sleep deprivation would change the activity of Achase, male Wistar rats, 3 months old, weighing 250-300 g, were deprived of REM sleep for 96 h by the flower-pot technique (N = 12). Two additional groups, a home-cage control (N = 6) and a large platform control (N = 6), were also used. Achase was measured in the frontal cortex using two different methods to obtain the enzyme activity. One method consisted of the obtention of total (900 g supernatant), membrane-bound (100,000 g pellet) and soluble (100,000 g supernatant) Achase, and the other method consisted of the obtention of a fraction (40,000 g pellet) enriched in synaptic membrane-bound enzyme. In both preparations, REM sleep deprivation induced a significant decrease in rat frontal cortex Achase activity when compared to both home-cage and large platform controls. REM sleep deprivation induced a significant decrease of 16% in the membrane-bound Achase activity (nmol thiocholine formed min-1 mg protein-1) in the 100,000 g pellet enzyme preparation (home-cage group 152.1 ± 5.7, large platform group 152.7 ± 24.9 and REM sleep-deprived group 127.9 ± 13.8). There was no difference in the soluble enzyme activity. REM sleep deprivation also induced a significant decrease of 20% in the enriched synaptic membrane-bound Achase activity (home-cage group 126.4 ± 21.5, large platform group 127.8 ± 20.4, REM sleep-deprived group 102.8 ± 14.2). Our results suggest that REM sleep deprivation changes Ach availability at the level of its receptors through a decrease in Achase activity
Resumo:
We sought to examine the possible participation of dopaminergic receptors in the phasic events that occur during rapid eye movement (REM) sleep, known as sawtooth waves (STW). These phasic phenomena of REM sleep exhibit a unique morphology and, although they represent a characteristic feature of REM sleep, little is known about the mechanisms which generate them and which are apparently different from rapid eye movements. STW behavior was studied in 10 male volunteers aged 20 to 35 years, who were submitted to polysomnographic monitoring (PSG). On the adaptation night they were submitted to the first PSG and on the second night, to the basal PSG. On the third night the volunteers received placebo or haloperidol and spent the whole night awake. On the fourth night they were submitted to the third PSG. After a 15-day rest period, the volunteers returned to the sleep laboratory and, according to a double-blind crossover randomized design, received haloperidol or placebo and spent the whole night awake, after which they were submitted to the fourth PSG. The volunteers who were given haloperidol combined with sleep deprivation exhibited an elevation of the duration and density of the STW, without significant alterations of the other REM sleep phasic phenomena such as rapid eye movement. These findings suggest that sawtooth waves must have their own generating mechanisms and that the dopaminergic receptors must exert a modulating role since REM sleep deprivation, as well as administration of neuroleptics, produces supersensitivity of dopaminergic receptors.
Resumo:
Our objective was to examine the effet of gender on the sleep pattern of patients referred to a sleep laboratory. The data (questionnaires and polysomnographic recordings) were collected from a total of 2365 patients (1550 men and 815 women). The polysomnography permits an objective assessment of the sleep pattern. We included only polysomnography exams obtained with no more than one recording system in order to permit normalization of the data. Men had a significantly higher body mass index than women (28.5 ± 4.8 vs 27.7 ± 6.35 kg/m²) and had a significantly higher score on the Epworth Sleepiness Scale (10.8 ± 5.3 vs 9.5 ± 6.0), suggesting daytime sleepiness. Women had a significantly higher sleep latency than men, as well as a higher rapid eye movement (REM) latency. Men spent more time in stages 1 (4.6 ± 4.1 vs 3.9 ± 3.8) and 2 (57.0 ± 10.5 vs 55.2 ± 10.1) of non-REM sleep than women, whereas women spent significantly more time in deep sleep stages (3 and 4) than men (22.6 ± 9.0 vs 19.9 ± 9.0). The apnea/hypopnea and arousal indexes were significantly higher and more frequent in men than in women (31.0 ± 31.5 vs 17.3 ± 19.7). Also, periodic leg movement index did not differ significantly between genders, but rather differed among age groups. We did not find significant differences between genders in the percentage of REM sleep and sleep efficiency. The results of the current study suggest that there are specific gender differences in sleep pattern.
Resumo:
Sleep spindles have been found to increase following an intense period of learning on a combination of motor tasks. It is not clear whether these changes are task specific, or a result of learning in general. The current study investigated changes in sleep spindles and spectral power following learning on cognitive procedural (C-PM), simple procedural (S-PM) or declarative (DM) learning tasks. It was hypothesized that S-PM learning would result in increases in Sigma power during Non-REM sleep, whereas C-PM and DM learning would not affect Sigma power. It was also hypothesized that DM learning would increase Theta power during REM sleep, whereas S-PM and C-PM learning would not affect Theta power. Thirty-six participants spent three consecutive nights in the sleep laboratory. Baseline polysomnographic recordings were collected on night 2. Participants were randomly assigned to one of four conditions: C-PM, S-PM, DM or control (C). Memory task training occurred on night 3 followed by polysomnographic recording. Re-testing on respective memory tasks occurred one-week following training. EEG was sampled at 256Hz from 16 sites during sleep. Artifact-free EEG from each sleep stage was submitted to power spectral analysis. The C-PM group made significantly fewer errors, the DM group recalled more, and the S-PM improved on performance from test to re-test. There was a significant night by group interaction for the duration of Stage 2 sleep. Independent t-tests revealed that the S-PM group had significantly more Stage 2 sleep on the test night than the C group. The C-PM and the DM group did not differ from controls in the duration of Stage 2 sleep on test night. There was no significant change in the duration of slow wave sleep (SWS) or REM sleep. Sleep spindle density (spindles/minute) increased significantly from baseline to test night following S-PM learning, but not for C-PM, DM or C groups. This is the first study to have shown that the same pattern of results was found for spindles in SWS. Low Sigma power (12-14Hz) increased significantly during SWS following S-PM learning but not for C-PM, DM or C groups. This effect was maximal at Cz, and the largest increase in Sigma power was at Oz. It was also found that Theta power increased significantly during REM sleep following DM learning, but not for S-PM, C-PM or C groups. This effect was maximal at Cz and the largest change in Theta power was observed at Cz. These findings are consistent with the previous research that simple procedural learning is consolidated during Stage 2 sleep, and provide additional data to suggest that sleep spindles across all non-REM stages and not just Stage 2 sleep may be a mechanism for brain plasticity. This study also provides the first evidence to suggest that Theta activity during REM sleep is involved in memory consolidation.
Resumo:
TORT, A. B. L. ; SCHEFFER-TEIXEIRA, R ; Souza, B.C. ; DRAGUHN, A. ; BRANKACK, J. . Theta-associated high-frequency oscillations (110-160 Hz) in the hippocampus and neocortex. Progress in Neurobiology , v. 100, p. 1-14, 2013.