999 resultados para nitroxide radical coupling
Resumo:
In a previous paper, we described the room temperature rapid, selective, reversible, and near quantitative Cu-activated nitroxide radical coupling (NRC) technique to prepare 3-arm polystyrene stars. In this work, we evaluated the Cu-activation mechanism, either conventional atom transfer or single electron transfer (SET), through kinetic simulations. Simulation data showed that one can describe the system by either activation mechanism. We also found through simulations that bimolecular radical termination, regardless of activation mechanism, was extremely low and could be considered negligible in an NRC reaction. Experiments were carried out to form 2- and 3-arm PSTY stars using two ligands, PMDETA and Me6TREN, in a range of solvent conditions by varying the ratio of DMSO to toluene, and over a wide temperature range. The rate of 2- or 3-arm star formation was governed by the choice of solvent and ligand. The combination of Me6TREN and toluene/DMSO showed a relatively temperature independent rate, and remarkably reached near quantitative yields for 2-arm star formation after only 1 min at 25 °C.
Resumo:
The single electron transfer-nitroxide radical coupling (SET-NRC) reaction has been used to produce multiblock polymers with high molecular weights in under 3 min at 50◦C by coupling a difunctional telechelic polystyrene (Br-PSTY-Br)with a dinitroxide. The well known combination of dimethyl sulfoxide as solvent and Me6TREN as ligand facilitated the in situ disproportionation of CuIBr to the highly active nascent Cu0 species. This SET reaction allowed polymeric radicals to be rapidly formed from their corresponding halide end-groups. Trapping of these carbon-centred radicals at close to diffusion controlled rates by dinitroxides resulted in high-molecular-weight multiblock polymers. Our results showed that the disproportionation of CuI was critical in obtaining these ultrafast reactions, and confirmed that activation was primarily through Cu0. We took advantage of the reversibility of the NRC reaction at elevated temperatures to decouple the multiblock back to the original PSTY building block through capping the chain-ends with mono-functional nitroxides. These alkoxyamine end-groups were further exchanged with an alkyne mono-functional nitroxide (TEMPO–≡) and ‘clicked’ by a CuI-catalyzed azide/alkyne cycloaddition (CuAAC) reaction with N3–PSTY–N3 to reform the multiblocks. This final ‘click’ reaction, even after the consecutive decoupling and nitroxide-exchange reactions, still produced high molecular-weight multiblocks efficiently. These SET-NRC reactions would have ideal applications in re-usable plastics and possibly as self-healing materials.
Resumo:
High activation of polystyrene with bromine end groups (PSTY-Br) to their incipient radicals occurred in the presence of Cu(I)Br, Me6TREN, and DMSO solvent. These radicals were then trapped by nitroxide species leading to coupling reactions between PSTY-Br and nitroxides that were ultrafast and selective in the presence of a diverse range of functional groups. The nitroxide radical coupling (NRC) reactions have the attributes of a “click” reaction with near quantitative yields of product formed, but through the reversibility of this reaction, it has the added advantage of permitting the exchange of chemical functionality on macromolecules. Conditions were chosen to facilitate the disproportionation of Cu(I)Br to the highly activating nascent Cu(0) and deactivating Cu(II)Br2 in the presence of DMSO solvent and Me6TREN ligand. NRC at room temperature gave near quantitative yields of macromolecular coupling of low molecular weight polystyrene with bromine chain-ends (PSTY-Br) and nitroxides in under 7 min even in the presence of functional groups (e.g., −≡, −OH, −COOH, −NH2, =O). Utilization of the reversibility of the NRC reaction at elevated temperatures allowed the exchange of chain-end groups with a variety of functional nitroxide derivatives. The robustness and orthogonality of this NRC reaction were further demonstrated using the Cu-catalyzed azide/alkyne “click” (CuAAC) reactions, in which yields greater than 95% were observed for coupling between PSTY-N3 and a PSTY chain first trapped with an alkyne functional TEMPO (PSTY-TEMPO-≡).
Selective Formation of Diblock Copolymers Using Radical Trap-Assisted Atom Transfer Radical Coupling
Resumo:
Polystyrene (PSt) radicals and poly(methyl acrylate) (PMA) radicals, derived from their monobrominated precursors prepared by atom transfer radical polymerization (ATRP), were formed in the presence of the radical trap 2-methyl-2-nitrosopropane (MNP), selectively forming PSt-PMA diblock copolymers with an alkoxyamine at the junction between the block segments. This radical trap-assisted, atom transfer radical coupling (RTA-ATRC) was performed in a single pot at low temperature (35 °C), while analogous traditional ATRC reactions at this temperature, which lacked the radical trap, resulted in no observed coupling and the PStBr and PMABr precursors were simply recovered. Selective formation of the diblock under RTA-ATRC conditions is consistent with the PStBr and PMABr having substantially different KATRP values, with PSt radicals initially being formed and trapped by the MNP and the PMA radicals being trapped by the in situ-formed nitroxide end-capped PSt. The midchain alkoxyamine functionality was confirmed by thermolysis of the diblock copolymer, resulting in recovery of the PSt segment and degradation of the PMA block at the relatively high temperatures (125 °C) required for thermal cleavage. A PSt-PMA diblock formed by chain extenstion ATRP using PStBr as the macroinitiator (thus lacking the alkoxyamine between the PSt-PMA segements) was inert to thermolysis. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013, 51, 3619–3626
Selective Formation of Diblock Copolymers Using Radical Trap-Assisted Atom Transfer Radical Coupling
Resumo:
Polystyrene (PSt) radicals and poly(methyl acrylate) (PMA) radicals, derived from their monobrominated precursors prepared by atom transfer radical polymerization (ATRP), were formed in the presence of the radical trap 2-methyl-2-nitrosopropane (MNP), selectively forming PSt-PMA diblock copolymers with an alkoxyamine at the junction between the block segments. This radical trap-assisted, atom transfer radical coupling (RTA-ATRC) was performed in a single pot at low temperature (35 degrees C), while analogous traditional ATRC reactions at this temperature, which lacked the radical trap, resulted in no observed coupling and the PStBr and PMABr precursors were simply recovered. Selective formation of the diblock under RTA-ATRC conditions is consistent with the PStBr and PMABr having substantially different K-ATRP values, with PSt radicals initially being formed and trapped by the MNP and the PMA radicals being trapped by the in situ-formed nitroxide end-capped PSt. The midchain alkoxyamine functionality was confirmed by thermolysis of the diblock copolymer, resulting in recovery of the PSt segment and degradation of the PMA block at the relatively high temperatures (125 degrees C) required for thermal cleavage. A PSt-PMA diblock formed by chain extenstion ATRP using PStBr as the macroinitiator (thus lacking the alkoxyamine between the PSt-PMA segements) was inert to thermolysis. (c) 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013, 51, 3619-3626
Resumo:
End-brominated poly(methyl methacrylate) (PMMABr) was prepared by atom transfer radical polymerization (ATRP) and employed in a series of atom transfer radical coupling (ATRC) and radical trap-assisted ATRC (RTA-ATRG) reactions. When coupling reactions were performed in the absence of a nitroso radical trap-traditional ATRC condition-very little coupling of the PMMA chains was observed, consistent with disproportionation as the major termination pathway for two PMMA chain-end radicals in our reactions. When 2-methyl-2-nitrosopropane (MNP) was used as the radical trap, coupling of the PMMA chains in this attempted RTA-ATRC reaction was again unsuccessful, owing to capping of the PMMA chains with a bulky nitroxide and preventing further coupling. Analogous reactions performed using nitrosobenzene (NBz) as the radical trap showed significant dimerization, as observed by gel permeation chromatography (GPC) by a shift in the apparent molecular weight compared to the PMMABr precursors. The extent of coupling was found to depend on the concentrion of NBz compared to the PMMABr chain ends, as well as the temperature and time of the coupling reaction. To a lesser extent, the concentrations of copper(I) bromide (CuBr), nitrogen ligand (N,N,N',N',N"-pentamethyldiethylenetriamine = PMDETA), and elemental copper (Cu) were also found to play a role in the success of the RTA-ATRC reaction. The highest levels of dimerization were observed when the coupling reaction was carried out at 80 degrees C for 0.5h, with ratio of 1:4:2.5:8:1 equiv of NBz: CuBr:Cu:PMDETA:PMMABr.
Resumo:
The synthesis of cyclic polystyrene (Pst) with an alkoxyamine functionality has been accomplished by intramolecular radical coupling in the presence of a nitroso radical trap Linear alpha,omega-dibrominated polystyrene, produced by the atom transfer radical polymerization (ATRP) of styrene using a dibrominated initiator, was subjected to chain-end activation via the atom transfer radical coupling (ATRC) process under pseudodilute conditions in the presence of 2-methyl-2-nitrosopropane (MNP). This radical trap-assisted, intramolecular ATRC (RTA-ATRC) produced cyclic polymers in greater than 90% yields possessing < G > values in the 0.8-0.9 range as determined by gel permeation chromatography (GPC). Thermal-induced opening of the cycles, made possible by the incorporated alkoxyamine, resulted in a return to the original apparent molecular weight, further supporting the formation of cyclic polymers in the RTA-ATRC reaction. Liquid chromatography-mass spectrometry (LC-MS) provided direct confirmation of the cyclic architecture and the incorporation of the nitroso group into the macrocycle RTA-ATRC cyclizations carried out with faster rates of polymer addition into the redox active solution and/or in the presence of a much larger excess of MNP (up to a 250:1 ratio of MNP:C-Br chain end) still yielded cyclic polymers that contained alkoxyamine functionality.
Resumo:
Monobrominated polystyrene (PStBr) chains were prepared using standard atom transfer radical polymerization (ATRP) procedures at 80 °C in THF, with monomer conversions allowed to proceed to approximately 40%. At this time, additional copper catalyst, reducing agent, and ligand were added to the unpurified reaction mixture, and the reaction was allowed to proceed at 50 °C in an atom transfer radical coupling (ATRC) phase. During this phase, polymerization continued to occur as well as coupling; expected due to the substantial amount of residual monomer remaining. This was confirmed using gel permeation chromatography (GPC), which showed increases in molecular weight not matching a simple doubling of the PStBr formed during ATRP, and an increase in monomer conversion after the second phase. When the radical trap 2-methyl-2-nitrosopropane (MNP) was added to the ATRC phase, no further monomer conversion occurred and the resulting product showed a doubling of peak molecular weight (Mp), consistent with a radical trap-assisted ATRC (RTA-ATRC) reaction.
Resumo:
Monobrominated polystyrene (PStBr) chains were prepared using standard atom transfer radical polymerization (ATRP) procedures at 80 degrees C in THF, with monomer conversions allowed to proceed to approximately 40%. At this time, additional copper catalyst, reducing agent, and ligand were added to the unpurified reaction mixture, and the reaction was allowed to proceed at 50 degrees C in an atom transfer radical coupling (ATRC) phase. During this phase, polymerization continued to occur as well as coupling; expected due to the substantial amount of residual monomer remaining. This was confirmed using gel permeation chromatography (GPC), which showed increases in molecular weight not matching a simple doubling of the PStBr formed during ATRP, and an increase in monomer conversion after the second phase. When the radical trap 2-methyl-2-nitrosopropane (MNP) was added to the ATRC phase, no further monomer conversion occurred and the resulting product showed a doubling of peak molecular weight (M-p), consistent with a radical trap-assisted ATRC (RTA-ATRC) reaction. (C) 2013 Elsevier Ltd. All rights reserved.
Resumo:
Monobrominated diblock copolymers composed of poly(styrene) (PSt), poly(methylacrylate) (PMA), or poly(methyl methacrylate) (PMMA) were synthesized by consecutive atom transfer radical polymerizations (ATRP). The brominated diblocks were utilized in atom transfer radical coupling (ATRC) and radical trap-assisted ATRC (RTA-ATRC) reactions to form ABA type triblock copolymers. Once PMMA-PStBr and PSt-PMABrBr were produced by ATRP, the synthes of PSt-PMA-PSt and PMMA-PSt- PMMA by ATRC and also by RTA-ATRC were attempted. The coupling methods were compared and it was found that RTA-ATRC succeeded in synthesizing PSt-PMA-PSt where ATRC could not, and that RTA-ATRC improved coupling over ATRC for PMMAPSt- PMMA. Incorporation of the radical trap 2-methyl-2-nitrosopropane (MNP) midchain allowed for simple thermal cleavage of the triblock to confirm the RTA-ATRC pathway occurred in preference over the head to head radical coupling pathway of ATRC. Triblocks made by ATRC did not cleave under our conditions, as no MNP was present and thus no labile C-O bond was incorporated. The RTA-ATRC pathway allowed for lower catalyst amounts (2 molar equivalents of copper(I)bromide and 2 molar equivalents of copper metal) and a high degree of coupling at lower temperatures (40°C). The RTA-ATRC improved upon ATRC because of its ability to generate a persistent radical and proceed by first order kinetics with respect to the chain end radical.
Resumo:
Phosphonatliganden in erweiterten anorganischen Hybridmaterialien undrnals Radikalträgern in KomplexenrnrnAnorganisch-organische Hybridmaterialien sind in der Regel extrem vielseitig. Die systematische Darstellung von niederdimensionalen Materialien (eindimensionale Kettenverbindungen oder zweidimensionalen Schichtverbindungen) mit einer Kontrolle über die Art der Verbindung,rnbietet neue Möglichkeiten im Bereich des molekularen Magnetismus. Hier im Fall von Metall-Phosphonat Verbindungen in erweiterten anorganischen Hybriden wurde der pH - Wert während der Reaktion eingestellt, wodurch der Grad der Protonierung des Phosphonatliganden kontrolliert wurde. Aufgrund der Tatsache, dass alle erhaltenen Metall Phosphonatverbindungen neutral waren, konnte das Ligand zu Metallverhältnis erstmals vorhergesagt werden. So wurden mehrere neue Metall–Phosphonat Verbindungen im Bereich von Null-dimensionalen (I0O0, Co-Kristallisation von M(H2O)6 mitrndeprotonierten Phosphonatligand), über eindimensionalen (I1O0, Kettenstrukturen) bis hin zu zweidimensionalen (I2O0, Schichtstrukturen) ausführlich diskutiert in Bezug auf ihr magnetisches Verhalten. Im Allgemeinen sind die erwarteten Austauschwechselwirkungen in einem erweiterten anorganischen Hybridmaterial stark, weil oft ein Superaustausch durch ein einzelnes Sauerstoffatom möglich ist. Hier waren oft mehrere konkurrierende Austauschwechselwirkungen vorhanden, so dass kompliziertere magnetische Verhalten beobachtet wurden.rnrnDarüber hinaus wurden drei neue Beispiele von Nitronyl-Nitroxidradikale dargestellt, in denen eine zusätzliche saure Funktionalität eingeführt war. Die Auswirkungen des sauren Charakters der zusätzlich eingeführten Sulfonsäure oder Phosphonsäure-Gruppe auf das Nitronyl-Nitroxidradikal wurden im Detail zum ersten Mal untersucht. Die mit der Phosphonsäure-Gruppe versehenen Nitronyl-Nitroxidradikale sind perfekte Proben für die Untersuchung einer Spin-Verschiebung in Nitronyl-Nitroxidradikale durch EPR-Spektroskopie, aufgrund des eingeführten Phosphors. Auch der Protonierungsgrad der zusätzlich eingeführten Phosphonsäure-Gruppe wurde berücksichtigt. In dieser Arbeit wurden die ersten Metallkomplexe der neuen substituierten sauren Nitronyl-Nitroxidradikale vorgestellt. Die Koordination von Nickel(II) Metallionen an die saure, zweite funktionelle Gruppe des Nitronyl–Nitroxid Radikal wurde beschrieben. Die magnetische Austauschwechselwirkung der Metallionen untereinander und die Metall-Radikal-Austauschwechselwirkungen wurden untersucht. rnrnIm Allgemeinen können interessante molekulare magnetische Materialien dadurch dargestellt werden, dass die Dimension der Metall-Phosphonat-Verbindungen als Beispiele für die erweiterten anorganischen Hybridmaterialien gesteuert werden kann. Mit Nitronyl-Nitroxidradikale als organische Liganden können in Zukunft noch mehr Spin-Träger in anorganisch-organischen Gerüstmaterialien integriert werden um die magnetischen Eigenschaften zu verbesseren.rn
Resumo:
A method for the production of macrocyclic polystyrene via ring closing of a linear !,"-dibrominated polystyrene by an Atom Transfer Radical Coupling (ATRC) reaction is described. The dibrominated polystyrene chain was produced from two simultaneous atom transfer radical polymerizations (ATRPs) originating from a dibrominated benzal bromide initiator. To ensure the retention of the halogen end groups polymerization was allowed to proceed to less than 50% conversion. Using this precursor in an intramolecular ATRC (ring closing) reaction was found to yield in excess of 90% cyclic product based on refractive index-gel permeation chromatography (GPC) analysis. The cyclic architecture of the polymer was verified by GPC, Nuclear Magnetic Resonance (NMR), and mass spectrometry analysis. The utility of this method has been expanded by the addition of 2-methyl-2-nitrosopropane to the coupling reaction, which allows for the coupling to proceed at a faster rate and to yield macrocycles with incorporated alkoxyamine functionality. The alkoxyamine functionality allows for degradation of the cycles at high temperatures (>125° C) and we hypothesize that it may allow the macrocycles to act as a macroinitiator for a ring expansion polymerization in future studies.
Resumo:
The synthesis of a new structural class of isoindoline nitroxides (aminoxyls), accessible via the palladium-catalysed Heck reaction, is presented. Reaction of the aryl bromoamine, 5-bromo-1,1,3,3-tetramethylisoindoline (4) or dibromoamine, 5,6-dibromo-1,1,3,3-tetramethylisoindoline (5) or the analogous bromonitroxides 6 and 7 with methyl acrylate gives the acrylate substituted tetramethylisoindoline amines 8 and 10 and nitroxides 12 and 14. Similarly, the reaction of the aryl bromides and dibromides 4–7 with methyl 4-vinylbenzoate gives the carboxystyryl substituted tetramethylisoindoline amines 9 and 11 and the analogous nitroxides 13 and 15. The carboxystyryl tetramethylisoindoline nitroxides demonstrate strongly suppressed fluorescence, which is revealed upon removal of the free radical by reduction or radical coupling.