999 resultados para nitrogen molecule


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The N+2 ion yield of the N2 molecule has been measured at the N 1s → Rydberg excitations. It displays Fano-type line shapes due to interference between direct outer-valence photoionization and participator decay of the core-excited Rydberg states. The N+2 ion yield is compared with the total intensity of the outer-valence photoelectron lines obtained recently with electron spectroscopy (Kivimäki et al 2012 Phys. Rev. A 86 012516). The increasing difference between the two curves at the higher core-to-Rydberg excitations is most likely due to soft x-ray emission processes that are followed by autoionization. The results also suggest that resonant Auger decay from the core–valence doubly excited states contributes to the N+2 ion yield at the photon energies that are located on both sides of the N 1s ionization limit.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Doppler limited high resolution spectrum in the wavelength region 17224 to 17236 cm−1 of the first positive system (B 3Π g −A 3Σ u + ) of the N2 molecule is recorded by optogalvanic spectroscopic technique using a single mode ring dye laser. It is observed that the intensity and line width of the rotational line increase with the discharge current. Dependence of the collision broadening coefficient on the current was also evaluated.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

High resolution optogalvanic spectrum of the (11, 7) band in the first positive system of nitrogen molecule has been recorded from 17179 to 17376 cm- 1. Assignment of 432 rotational lines belonging to the 27 branches of this band has been carried out.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Nitrogen-doped TiO2 nanofibres of anatase and TiO2(B) phases were synthesised by a reaction between titanate nanofibres of a layered structure and gaseous NH3 at 400–700 °C, following a different mechanism than that for the direct nitrogen doping from TiO2. The surface of the N-doped TiO2 nanofibres can be tuned by facial calcination in air to remove the surface-bonded N species, whereas the core remains N doped. N-Doped TiO2 nanofibres, only after calcination in air, became effective photocatalysts for the decomposition of sulforhodamine B under visible-light irradiation. The surface-oxidised surface layer was proven to be very effective for organic molecule adsorption, and the activation of oxygen molecules, whereas the remaining N-doped interior of the fibres strongly absorbed visible light, resulting in the generation of electrons and holes. The N-doped nanofibres were also used as supports of gold nanoparticle (Au NP) photocatalysts for visible-light-driven hydroamination of phenylacetylene with aniline. Phenylacetylene was activated on the N-doped surface of the nanofibres and aniline on the Au NPs. The Au NPs adsorbed on N-doped TiO2(B) nanofibres exhibited much better conversion (80 % of phenylacetylene) than when adsorbed on undoped fibres (46 %) at 40 °C and 95 % of the product is the desired imine. The surface N species can prevent the adsorption of O2 that is unfavourable for the hydroamination reaction, and thus, improve the photocatalytic activity. Removal of the surface N species resulted in a sharp decrease of the photocatalytic activity. These photocatalysts are feasible for practical applications, because they can be easily dispersed into solution and separated from a liquid by filtration, sedimentation or centrifugation due to their fibril morphology.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Formative time lags in nitrogen, oxygen, and dry air are measured with and without a magnetic field over a range of gas pressures (0.05 ' p ' 20.2 torr 5 kPa to 2 MPa, electric field strengths (1.8xO14 EEs 60xlO V m l) and magnetic field strengths (85xl0-4 < B ' 16x10-2 Tesla). For experiments below the Paschen minimum, the electrodes are designed to ensure that breakdown occurs over longer gaps and for experiments above the Paschen minimum, a coaxial cylindrical system is employed. The experimental technique consists of applying pulse voltages to the gap at various constant values of E/p and B/p and measuring the time lags from which the formative time lags are separated. In the gases studed, formative time lags decrease on application of a magnetic field at a given pressure for conditions below the Paschen minimum. The voltages at which the formative time lags remain the same without and with magnetic fields are determined, and electron molecule collision frequencies (v/p) are determined using the Effective Reduced Electric Field [EREF] concept. With increasing ratio of E/p in crossed fields, v/p decreases in all the three gases. Measurements above the Paschen minimum yield formative time lags which increase on application of a magnetic field. Formative time lags in nitrogen in ExB fields are calculated assuming an average collision frequency of 8.5x109 sec-1 torr 1. It is concluded that the EREF concept can be applied to explain formative time lags in ExB fields.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The reactivity of permethylzirconocene and permethylhafnocene complexes with various nucleophiles has been investigated. Permethylzirconocene reacts with sterically hindered ketenes and allenes to afford metallacycle products. Reaction of these cummulenes with permethylzirconocene hydride complexes affords enolate and σ-allyl species, respectively. Reactions which afford enolate products are nonstereospecific, whereas reactions which afford allyl products initially give a cis-σ-allyl complex which rearranges to its trans isomer. The mechanism of these reactions is proposed to occur either by a Lewis Acid-Lewis Base interaction (ketenes) or by formation of a π-olefin intermediate (allenes).

Permethylzirconocene haloacyl complexes react with strong bases such as lithium diisopropylamide or methylene trimethylphosphorane to afford ketene compounds. Depending on the size of the alkyl ketene substituent, the hydrogenation of these compounds affords enolate-hydride products with varying degrees of stereoselectivity. The larger the substituent, the greater is the selectivity for cis hydrogenation products.

The reaction of permethylzirconocene dihydride and permethylhafnocene dihydride with methylene trimethylphosphorane affords methyl-hydride and dimethyl derivatives. Under appropriate conditions, the metallated-ylide complex 1, (η^5-C_5(CH_3)_5)_2 Zr(H)CH_2PMe_2CH_2, is also obtained and has been structurally characterized by X-ray diffraction techniques. Reaction of 1 with CO affords (η^5-C_5(CH_3)_5)_2 Zr(C,O-η^2 -(PMe_3)HC=CO)H which exists in solution as an equilibrium mixture of isomers. In one isomer (2), the η^2-acyl oxygen atom occupies a lateral equatorial coordination position about zirconium, whereas in the other isomer (3), the η-acyl oxygen atom occupies the central equatorial position. The equilibrium kinetics of the 2→3 isomerization have been studied and the structures of both complexes confirmed by X-ray diffraction methods. These studies suggest a mechanism for CO insertion into metal-carbon bonds of the early transition metals.

Permethylhafnocene dihydride and permethylzirconocene hydride complexes react with diazoalkanes to afford η^2-N, N' -hydrazonido species in which the terminal nitrogen atom of the diazoalkane molecule has inserted into a metal-hydride or metal-carbon bond. The structure of one of these compounds, Cp*_2Zr(NMeNCTol_2)OH, has been determined by X-ray diffraction techniques. Under appropriate conditions, the hydrazonido-hydride complexes react with a second equivalent of diazoalkene to afford η' -N-hydrazonido-η^2-N, N' -hydrazonido species.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This dissertation focuses on the incorporation of non-innocent or multifunctional moieties into different ligand scaffolds to support one or multiple metal centers in close proximity. Chapter 2 focuses on the initial efforts to synthesize hetero- or homometallic tri- or dinuclear metal carbonyl complexes supported by para-terphenyl diphosphine ligands. A series of [M2M’(CO)4]-type clusters (M = Ni, Pd; M’ = Fe, Co) could be accessed and used to relate the metal composition to the properties of the complexes. During these studies it was also found that non-innocent behavior was observed in dinuclear Fe complexes that result from changes in oxidation state of the cluster. These studies led to efforts to rationally incorporate central arene moieties capable managing both protons and electrons during small molecule activation.

Chapter 3 discusses the synthesis of metal complexes supported by a novel para-terphenyl diphosphine ligand containing a non-innocent 1,4-hydroquinone moiety as the central arene. A Pd0-hydroquinone complex was found to mediate the activation of a variety of small molecules to form the corresponding Pd0-quinone complexes in a formal two proton ⁄ two electron transformation. Mechanistic investigations of dioxygen activation revealed a metal-first activation process followed by subsequent proton and electron transfer from the ligand. These studies revealed the capacity of the central arene substituent to serve as a reservoir for a formal equivalent of dihydrogen, although the stability of the M-quinone compounds prevented access to the PdII-quinone oxidation state, thus hindering of small molecule transformations requiring more than two electrons per equivalent of metal complex.

Chapter 4 discusses the synthesis of metal complexes supported by a ligand containing a 3,5-substituted pyridine moiety as the linker separating the phenylene phosphine donors. Nickel and palladium complexes supported by this ligand were found to tolerate a wide variety of pyridine nitrogen-coordinated electrophiles which were found to alter central pyridine electronics, and therefore metal-pyridine π-system interactions, substantially. Furthermore, nickel complexes supported by this ligand were found to activate H-B and H-Si bonds and formally hydroborate and hydrosilylate the central pyridine ring. These systems highlight the potential use of pyridine π-system-coordinated metal complexes to reversibly store reducing equivalents within the ligand framework in a manner akin to the previously discussed 1,4-hydroquinone diphosphine ligand scaffold.

Chapter 5 departs from the phosphine-based chemistry and instead focuses on the incorporation of hydrogen bonding networks into the secondary coordination sphere of [Fe44-O)]-type clusters supported by various pyrazolate ligands. The aim of this project is to stabilize reactive oxygenic species, such as oxos, to study their spectroscopy and reactivity in the context of complicated multimetallic clusters. Herein is reported this synthesis and electrochemical and Mössbauer characterization of a series of chloride clusters have been synthesized using parent pyrazolate and a 3-aminophenyl substituted pyrazolate ligand. Efforts to rationally access hydroxo and oxo clusters from these chloride precursors represents ongoing work that will continue in the group.

Appendix A discusses attempts to access [Fe3Ni]-type clusters as models of the enzymatic active site of [NiFe] carbon monoxide dehydrogenase. Efforts to construct tetranuclear clusters with an interstitial sulfide proved unsuccessful, although a (μ3-S) ligand could be installed through non-oxidative routes into triiron clusters. While [Fe3Ni(μ4-O)]-type clusters could be assembled, accessing an open heterobimetallic edge site proved challenging, thus prohibiting efforts to study chemical transformations, such as hydroxide attack onto carbon monoxide or carbon dioxide coordination, relevant to the native enzyme. Appendix B discusses the attempts to synthesize models of the full H-cluster of [FeFe]-hydrogenase using a bioinorganic approach. A synthetic peptide containing three cysteine donors was successfully synthesized and found to chelate a preformed synthetic [Fe4S4] cluster. However, efforts to incorporate the diiron subsite model complex proved challenging as the planned thioester exchange reaction was found to non-selectively acetylate the peptide backbone, thus preventing the construction of the full six-iron cluster.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In order to improve algal biofuel production on a commercial-scale, an understanding of algal growth and fuel molecule accumulation is essential. A mathematical model is presented that describes biomass growth and storage molecule (TAG lipid and starch) accumulation in the freshwater microalga Chlorella vulgaris, under mixotrophic and autotrophic conditions. Biomass growth was formulated based on the Droop model, while the storage molecule production was calculated based on the carbon balance within the algal cells incorporating carbon fixation via photosynthesis, organic carbon uptake and functional biomass growth. The model was validated with experimental growth data of C. vulgaris and was found to fit the data well. Sensitivity analysis showed that the model performance was highly sensitive to variations in parameters associated with nutrient factors, photosynthesis and light intensity. The maximum productivity and biomass concentration were achieved under mixotrophic nitrogen sufficient conditions, while the maximum storage content was obtained under mixotrophic nitrogen deficient conditions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In order to improve algal biofuel production on a commercial-scale, an understanding of algal growth and fuel molecule accumulation is essential. A mathematical model is presented that describes biomass growth and storage molecule (TAG lipid and starch) accumulation in the freshwater microalga Chlorella vulgaris, under mixotrophic and autotrophic conditions. Biomass growth was formulated based on the Droop model, while the storage molecule production was calculated based on the carbon balance within the algal cells incorporating carbon fixation via photosynthesis, organic carbon uptake and functional biomass growth. The model was validated with experimental growth data of C. vulgaris and was found to fit the data well. Sensitivity analysis showed that the model performance was highly sensitive to variations in parameters associated with nutrient factors, photosynthesis and light intensity. The maximum productivity and biomass concentration were achieved under mixotrophic nitrogen sufficient conditions, while the maximum storage content was obtained under mixotrophic nitrogen deficient conditions. © 2014 Elsevier Ltd.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Five new complexes based on rare-earth-radical [Ln(hfac)(3)(NIT-5-Br-3py)](2) (Ln=Pr (1), Sm (2), Eu (3), Tb (4), Tm (5); hfac = hexafluoroacetylacetonate; NIT-5-Br-3py = 2-(4,4,5,5-tetramethyl-3-oxylimidazoline-1-oxide)-5-bromo-3-pyridine) have been synthesized and characterized by X-ray crystal diffraction. The single-crystal structures show that these complexes have similar structures, in which a NIT-5-Br-3py molecule acts as a bridging ligand linking two Ln(III) ions through the oxygen atom of the N-O group and nitrogen atom from the pyridine ring to form a four-spin system. Both static and dynamic magnetic properties were measured for complex 4, which exhibits single-molecule magnetism behavior.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Two new families of building blocks have been prepared and fully characterized and their coordination chemistry exploited for the preparation of molecule-based magnetic materials. The first class of compounds were prepared by exploiting the chemistry of 3,3'-diamino-2,2'-bipyridine together with 2-pyridine carbonyl chloride or 2-pyridine aldehyde. Two new ligands, 2,2'-bipyridine-3,3'-[2-pyridinecarboxamide] (Li, 2.3) and N'-6/s(2-pyridylmethyl) [2,2'bipyridine]-3,3'-diimine (L2, 2.7), were prepared and characterized. For ligand L4, two copper(II) coordination compounds were isolated with stoichiometrics [Cu2(Li)(hfac)2] (2.4) and [Cu(Li)Cl2] (2.5). The molecular structures of both complexes were determined by X-ray crystallography. In both complexes the ligand is in the dianionic form and coordinates the divalent Cu(II) ions via one amido and two pyridine nitrogen donor atoms. In (2.4), the coordination geometry around both Cu11 ions is best described as distorted trigonal bipyramidal where the remaining two coordination sites are satisfied by hfac counterions. In (2.5), both Cu(II) ions adopt a (4+1) distorted square pyramidal geometry. One copper forms a longer apical bond to an adjacent carbonyl oxygen atom, whereas the second copper is chelated to a neighboring Cu-Cl chloride ion to afford chloride bridged linear [Cu2(Li)Cl2]2 tetramers that run along the c-axis of the unit cell. The magnetic susceptibility data for (2.4) reveal the occurrence of weak antiferromagnetic interactions between the copper(II) ions. In contrast, variable temperature magnetic susceptibility measurements for (2.5) reveal more complex magnetic properties with the presence of ferromagnetic exchange between the central dimeric pair of copper atoms and weak antiferromagnetic exchange between the outer pairs of copper atoms. The Schiff-base bis-imine ligand (L2, 2.7) was found to be highly reactive; single crystals grown from dry methanol afforded compound (2.14) for which two methanol molecules had added across the imine double bond. The susceptibility of this ligand to nucleophilic attack at its imine functionality assisted via chelation to Lewis acidic metal ions adds an interesting dimension to its coordination chemistry. In this respect, a Co(II) quaterpyridine-type complex was prepared via a one-pot transformation of ligand L2 in the presence of a Lewis acidic metal salt. The rearranged complex was characterized by X-ray crystallography and a reaction mechanism for its formation has been proposed. Three additional rearranged complexes (2.13), (2.17) and (2.19) were also isolated when ligand (L2, 2.7) was reacted with transition metal ions. The molecular structures of all three complexes have been determined by X-ray crystallography. The second class of compounds that are reported in this thesis, are the two diacetyl pyridine derivatives, 4-pyridyl-2,6-diacetylpyridine (5.5) and 2,2'-6,6'-tetraacetyl-4,4'-bipyridine (5.15). Both of these compounds have been designed as intermediates for the metal templated assembly of a Schiff-base N3O2 macrocycle. From compound (5.15), a covalently tethered dimeric Mn(II) macrocyclic compound of general formula {[Mn^C^XJCl-FkO^Cl-lO.SFbO (5.16) was prepared and characterized. The X-ray analysis of (5.16) reveals that the two manganese ions assume a pentagonal-bipyramidal geometry with the macrocycle occupying the pentagonal plane and the axial positions being filled by a halide ion and a H2O molecule. Magnetic susceptibility data reveal the occurrence of antiferromagnetic interactions between covalently tethered Mn(II)-Mn(II) dimeric units. Following this methodology a Co(II) analogue (5.17) has also been prepared which is isostructural with (5.16).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Nitrogen trifluoride (NF3) is an industrial gas used in the semiconductor industry as a plasma etchant and chamber cleaning gas. NF3 is an alternative to other potent greenhouse gases and its usage has increased markedly over the last decade. In recognition of its increased relevance and to aid planning of future usage we report an updated radiative efficiency and global warming potentials for NF3. Laboratory measurements give an integrated absorption cross section of 7.04 x 10(-17) cm(2) molecule(-1) cm(-1) over the spectral region 200 2000 cm(-1). The radiative efficiency is calculated to be 0.21 Wm(-2) ppbv(-1) and the 100 year GWP, relative to carbon dioxide, is 17200. These values are approximately 60% higher than previously published estimates, primarily reflecting the higher infrared absorption cross-sections reported here.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Time-resolved studies of the reaction of silylene, SiH2, with N-2 have been attempted at 296, 417, and 484 K, using laser flash photolysis to generate and monitor SiH2. No conclusive evidence for reaction could be found even with pressures of N-2 of 500 Torr. This enables us to set upper limits of ca. 3 x 10(-15) cm(3) molecule(-1) s(-1) for the second-order rate constants. A lower limit for the activation energy, E-a, of ca. 47 kJ mol(-1) is also derived. Ab initio calculations at the G3 level indicate that the only SiH2N2 species of lower energy than the separated reactants is the H2Si...N-2 donor-acceptor (ylid) species with a relative enthalpy of -26 kJ mol(-1), insufficient for observation of reaction under the experimental conditions. Ten bound species on the SiH2N2 surface were found and their energies calculated as well as those of the potential dissociation products: HSiN + NH((3)Sigma(-)) and HNSi + NH((3)Sigma(-)). Additionally two of the transition states involving cyclic-SiH2N2 (siladiazirine) were explored. It appears that siladiazirine is neither thermodynamically nor kinetically stable. The findings indicate that Si-N-d bonds (where N-d is double-bonded nitrogen) are not particularly strong. An unexpected cyclic intermediate was found in the isomerization of silaisocyanamide to silacyanamide.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We present an application of cavity-enhanced absorption spectroscopy with an off-axis alignment of the cavity formed by two spherical mirrors and with time integration of the cavity-output intensity for detection of nitrogen dioxide (NO2) and iodine monoxide (IO) radicals using a violet laser diode at lambda = 404.278 nm. A noise-equivalent (1sigma = root-mean-square variation of the signal) fractional absorption for one optical pass of 4.5x10(-8) was demonstrated with a mirror reflectivity of similar to0.99925, a cavity length of 0.22 m and a lock-in-amplifier time constant of 3 s. Noise-equivalent detection sensitivities towards nitrogen dioxide of 1.8x10(10) molecule cm(-3) and towards the IO radical of 3.3x10(9) molecule cm(-3) were achieved in flow tubes with an inner diameter of 4 cm for a lock-in-amplifier time constant of 3 s. Alkyl peroxy radicals were detected using chemical titration with excess nitric oxide (RO2 + NO --> RO + NO2). Measurement of oxygen-atom concentrations was accomplished by determining the depletion of NO2 in the reaction NO2 + O --> NO + O-2. Noise-equivalent concentrations of alkyl peroxy radicals and oxygen atoms were 3x10(10) molecule cm(-3) in the discharge-flow-tube experiments.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

CCSD(T)/cc-pVnZ (n = D, T, Q) calculations followed by extrapolations to the CBS limit are used to characterize stationary states of species participating in the N((4)S) + CH(3) (2A ``) reaction on the triplet PES. A mechanistic model is investigated and reaction rates are computed for every step and the overall reaction. Our best CBS estimate (1.93 x 10(10) cm(3) molecule(1) s(1)) for the overall rate constant leading to the formation of H(2)CN + H compares well with the experimental values (8.5 x 10 (11) and 1.3 x 10(10) cm(3) molecule(1) s(1)), thus reducing significantly the discrepancy of a previous theoretical result (9.1 x 10(12) cm(3) molecule(1) s(1)). (C) 2008 Elsevier B.V. All rights reserved.