953 resultados para nitrogen interstitial
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Ammonium (NH4+) concentration profiles in piston-core sediments of the Carolina Rise and Blake Ridge generally have linear concentration profiles within the sulfate reduction zone (Borowski, 1998). Deep Sea Drilling Project (DSDP) Site 533, located on the Blake Ridge, also displayed a linear ammonium concentration profile through the sulfate reduction zone and the profile linearity continues into the upper methanogenic zone to a depth of ~200 meters below seafloor (mbsf), where the first methane gas hydrates probably occur (Jenden and Gieskes, 1983, doi:10.2973/dsdp.proc.76.114.1983; Kvenvolden and Barnard, 1983, doi:10.2973/dsdp.proc.76.106.1983). Sediments from the Ocean Drilling Program (ODP) Leg 164 deep holes (Sites 994, 995, and 997) also exhibit linear ammonium profiles above the top of the gas hydrate zone (~200 mbsf) (Paull, Matsumoto, Wallace, et al., 1996, doi:10.2973/odp.proc.ir.164.1996). We hypothesized that a possible cause of linear ammonium profiles was diffusion of ammonium from a concentrated ammonium source at depth. We further reasoned that if this ammonium were produced by microbial fermentation reactions at depth, that a comparison of the nitrogen isotopic composition of sedimentary organic nitrogen and the nitrogen with pore-water ammonium would test this hypothesis. Convergence with depth of d15N values of the nitrogen source (sedimentary organic matter) and the nitrogen product (dissolved NH4+) would strongly suggest that ammonium was produced within a particular depth zone by microbial fermentation reactions. Here, we report d15N values of pore-water ammonium from selected interstitial water (IW) samples from Site 997, sampled during ODP Leg 164.
Resumo:
Titanium alloys are excellent implant materials for orthopedic applications due to their desirable properties, such as good corrosion resistance, low elasticity modulus, and excellent biocompatibility. The presence of interstitial elements (such as oxygen and nitrogen) causes strong changes in the material's mechanical properties, mainly in its elastic properties. Study of the interaction among interstitial elements present in metals began with Snoek's postulate, that a stress-induced ordering of interstitials gives rise to a peak in the mechanical relaxation (internal friction) spectra. In the mechanical relaxation spectra, each species of interstitial solute atom gives rise to a distinct Snoek's peak, whose temperature and position depend on the measurement frequency. This effect is very interesting because its peculiar parameters are directly related to the diffusion coefficient (D) for the interstitial solute. This paper presents a study of diffusion of heavy interstitial elements in Ti-35Nb-7Zr-5Ta alloys using mechanical spectroscopy. Pre-exponential factors and activation energies are calculated for oxygen and nitrogen in theses alloys.
Resumo:
Metals with a bcc crystalline structure such as Ti-13V-11Cr-3Al alloys have their physical properties significantly changed through the addition of interstitial elements such as oxygen and nitrogen. These metals can dissolve substantial amounts of interstitial elements forming solid solutions. Mechanical spectroscopy measurements constitute a powerful tool for studying interactions of these interstitial elements with other elements that make up the alloy. From these measurements, it is possible to obtain information regarding diffusion, interstitial concentration, interaction between interstitials, and other imperfections of the crystalline lattice, In this paper, Ti-13V-11Cr-3Al alloys with several amount of nitrogen, in a solid solution, were studied using mechanical spectroscopy (internal friction) measurements. The results presented complex internal friction spectra which were resolved in a series of constituent Debye peaks corresponding to different interactions and interstitial diffusion coefficients. Pre-exponential factors and activation energies were calculated for nitrogen in theses alloys.
Resumo:
The scientific and technological development in the area of new materials contributed to several applications of niobium and its alloys in nuclear power plants as well as in aerospace, aeronautics, automobile and naval industries. This paper presents the interstitial diffusion coefficients of nitrogen in solid solution in the Nb-1.0wt%Zr alloy using internal friction measurements obtained by mechanical spectroscopy, which uses a torsion pendulum operating at an oscillation frequency between 1.0 Hz and 10.0 Hz. The temperature range varies from 300K to 700K, at a heating rate of 1 K/min and vacuum better than 2 x 10(-6) Torr. The results showed an increase of the interstitial diffusion coefficient of nitrogen that was correlated with configurational considerations for the octahedral interstitials.
Resumo:
The mechanical properties of metals with a body-centered cubic (bcc) structure, such as Nb, Ta, V, and their alloys, are modified with the introduction of interstitial impurities, such as O, N, C, or H. These metals can dissolve great amounts of O and N, for example, to form solid solutions. The interstitial solute atoms (ISA) in metals with a bcc structure occupy octahedral sites and cause local distortion with tetragonal symmetry. So ISA in these metals forms an elastic dipole that can align along one of the three cubic axis of the crystal. In the present paper, the torsion pendulum technique was employed for the investigation of various interactions among the metallic matrix and different interstitial solutes in the Nb-46wt%Ti alloy. From the relaxation spectra, we obtained the diffusion coefficients, pre-exponential factors, and activation energies for nitrogen in the Nb-46wt%Ti alloy.
Resumo:
The Ti-15Mo alloy is a promising material for use as a biomaterial because of its excellent corrosion resistance and its good combination of mechanical properties, such as fatigue, hardness, and wears resistance. This alloy has a body-centered predominantly cubic crystalline structure and the addition of interstitial atoms, such as oxygen and nitrogen, strongly alters its mechanical properties. Mechanical spectroscopy is a powerful tool to study the interaction of interstitial elements with the matrix metal or substitutional solutes, providing information such as the distribution and the concentration of interstitial elements. The objective of this paper is to study of the effects of heavy interstitial elements, such as oxygen and nitrogen, on the anelastic properties of the Ti-15Mo alloy by using mechanical spectroscopy measurements. In this study, the diffusion coefficients, pre-exponential factors, and activation energies were calculated for the oxygen in the Ti-15Mo alloy.
Resumo:
Anelastic relaxation measurements were performed in a Nb-46wt%Ti alloy, in the temperature range of 300 to 700 K, using a torsion pendulum operating at an oscillating frequency near 2.0 Hz. The samples were measured in different conditions: cold worked, annealed in ultra-high vacuum and doped with several quantities of nitrogen. The relaxation spectra obtained were resolved into their component peaks, corresponding to the different kinds of interaction of the interstitial solutes with the metallic matrix. The relaxation parameters of each process were calculated using Debye's elementary peaks.
Resumo:
Metals that present bcc crystalline structure, when receiving addition of interstitial atoms as oxygen, nitrogen, hydrogen and carbon, undergo significant changes in their physical properties, being able to dissolve great amounts of those interstitial elements, thus forming solid solutions. Niobium and most of its alloys possess bcc crystalline structure and, as Brazil is the largest world exporter of this metal, it is fundamental to understand the interaction mechanisms between interstitial elements and niobium or its alloys. In this paper, mechanical spectroscopy (internal friction) measurements were performed in Nb-2.0wt%Ti alloys containing nitrogen in solid solution. The experimental results presented complex internal friction spectra and with the addition of substitutional solute, it was observed interactions between the two types of solutes (substitutional and interstitial), considering that the random distribution of the interstitial atoms was affected by the presence of substitutional atoms. Interstitial diffusion coefficients, pre-exponential factors and activation energies were calculated for nitrogen in the Nb-2.0wt%Ti alloys.
Resumo:
It is well known that the interstitial elements present in solid solution in metals interact with the matrix by a relaxation process known as stress induced ordering. Traditionally this relaxation process is observed in the internal friction measurements. It is a common practice that researchers present the results of the frequency together with internal friction without giving any analysis. In this work we apply an expression which relates the variation of frequency with temperature and analyse the experimental results cited in the literature of the relaxation process due to the stress induced ordering of oxygen and nitrogen present in niobium and tantalum.
Resumo:
Measurements of internal friction as a function of temperature were carried out in samples of mobium containing different amounts of interstitial solutes (oxygen and nitrogen) and one sample of mobium containing initially only nitrogen as interstitial solute. The experimental spectra of internal friction as a function of temperature were obtained with a torsion pendulum of the inverted Ke-type and resolved, using the method of successive subtraction, into a series of constituent Debye peaks corresponding to different interactions. For each relaxation process it was possible to obtain the height (Q(max)(-1)) and temperature (T-p) of the peak, the activation energy (E) and the relaxation time (t(o)). The height, shape and temperature of these peaks depend on the concentration of interstitial elements. The observed peaks were associated with matrix-interstitial (Nb-O, Nb-N) and interstitial-interstitial (O-N) interaction processes. (C) 2003 Elsevier B.V. All rights reserved.
Resumo:
Internal friction and frequency measurements as a function of temperature have been carried out in Nb and Nb-Zr policrystalline samples, using a torsion pendulum in the temperature range between 300K and 700K the heating rate was 1K/min and the pressure was kept better than 5x10(-3) mbar. Metals with bce lattice containing solute atoms dissolved interstitially often show anelastic behaviour due to a process know as stress-induced ordering responsible for the appearance of Snoek peaks. In the Nb sample it has been identified two constituent peaks corresponding to the interstitial-matrix interactions (Nb-O and Nb-N), but for the Nb-Zr samples with interstitial solute concentrations very close to those measured for the unalloyed Nb, it was not observed any mechanical relaxation peaks due to the presence of oxygen and nitrogen in solid solution.
Resumo:
The mechanical properties of metals with bee structure, such as niobium and their alloys, are changed of a significant way by the introduction of heavy interstitial elements. These interstitial elements (oxygen, for example) present in the metallic matrix occupy octahedral sites and constitute an elastic dipole of tetragonal symmetry and might produce anelastic relaxation. Polycrystalline samples of Nb-0.3 wt.% Ti (Nb-Ti) alloy with oxygen in solid solution were analysed. The anelastic spectroscopy measurements had been made in a torsion pendulum, with frequencies in the Hz range, in a temperature range between 300 and 700 K. The results showed thermally activated relaxation structures were identified four relaxation process attributed to stress-induced ordering of single oxygen, nitrogen and carbon atoms around niobium and stress-induced ordering of single oxygen atoms around titanium atoms. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
Metals and alloys containing solute atoms dissolved interstitially often show anelastic behavior due to a process know as stress-induced ordering. The application of mechanical spectroscopy measurements to diffusion studies in body-centered cubic metals has been extensively used in the last decades. However the kind of preferential occupation of interstitial solutes in body-centered cubic metals is still controversial. The anelastic properties of the Nb and Nb-1 wt% Zr polycrystalline alloys were determined by internal friction and oscillation frequency measurements using a torsion pendulum inverted performed between 300K and 650K, operating in a frequency oscillation in the hertz bandwidth. The interstitial diffusion coefficients of oxygen and nitrogen in Nb and Nb-1 wt% Zr samples were determined at two distinct conditions: (a) for low concentration of oxygen and (b) for high concentration of oxygen.
Resumo:
The short-range diffusion phenomenon (Snoek Effect) was investigated by mechanical spectroscopy measurements between 300 K and 650 K, in a polycrystalline niobium sample, containing oxygen and nitrogen, using a torsion pendulum. Experimental spectra of anelastic relaxation were obtained under three conditions: as-received sample; annealed sample and subsequently annealed in an oxygen atmosphere for three hours at 1170 K in partial pressure of 5°10 -5mbar. The experimental spectra obtained were decomposed in elementary Debye peaks and the anelastic relaxation processes were identified. With anelastic relaxation parameters and the lattice parameters, the interstitial diffusion coefficients of the oxygen and nitrogen in niobium were calculated for each kind of preferential occupation (octahedral and tetrahedral). The results were compared with the literature data, and confirmed that the best adjustment is for the preferential occupation octahedral model for low concentrations of interstitial solutes, but at higher concentration of oxygen were observed deviations of experimental data for the interstitial diffusion coefficients of oxygen in niobium when compared with the literature data, this could be related to the possible occurrence of a double occupation of interstitial sites in the niobium lattice by oxygen interstitials. © (2010) Trans Tech Publications.