992 resultados para nitrogen input
Resumo:
Stable nitrogen isotope signatures of major sources of mineral nitrogen ( mineralization of soil organic nitrogen, biological N-2 fixation by legumes, annual precipitation and plant litter decomposition) were measured to relatively define their individual contribution to grass assimilation at the Haibei Alpine Meadow Ecosystem, Qinghai, China. The results indicated that delta N-15 values (- 2.40 parts per thousand to 0.97 parts per thousand) of all grasses were much lower than those of soil organic matter (3.4 +/- 0.18 parts per thousand) and mineral nitrogen ( ammonium and nitrate together,7.8 +/- 0.57 parts per thousand). Based on the patterns of stable nitrogen isotopes, soil organic matter (3.4 +/- 0.18 parts per thousand), biological N-2 fixation (0 parts per thousand), and precipitation (- 6.34 +/- 0.24 parts per thousand) only contributed to a small fraction of nitrogen requirements of grasses, but plant litter decomposition (- 1.31 +/- 1.01 parts per thousand) accounted for 67%.
Resumo:
Nitrogen is an essential nutrient. It is for human, animal and plants a constituent element of proteins and nucleic acids. Although the majority of the Earth’s atmosphere consists of elemental nitrogen (N2, 78 %) only a few microorganisms can use it directly. To be useful for higher plants and animals elemental nitrogen must be converted to a reactive oxidized form. This conversion happens within the nitrogen cycle by free-living microorganisms, symbiotic living Rhizobium bacteria or by lightning. Humans are able to synthesize reactive nitrogen through the Haber-Bosch process since the beginning of the 20th century. As a result food security of the world population could be improved noticeably. On the other side the increased nitrogen input results in acidification and eutrophication of ecosystems and in loss of biodiversity. Negative health effects arose for humans such as fine particulate matter and summer smog. Furthermore, reactive nitrogen plays a decisive role at atmospheric chemistry and global cycles of pollutants and nutritive substances.rnNitrogen monoxide (NO) and nitrogen dioxide (NO2) belong to the reactive trace gases and are grouped under the generic term NOx. They are important components of atmospheric oxidative processes and influence the lifetime of various less reactive greenhouse gases. NO and NO2 are generated amongst others at combustion process by oxidation of atmospheric nitrogen as well as by biological processes within soil. In atmosphere NO is converted very quickly into NO2. NO2 is than oxidized to nitrate (NO3-) and to nitric acid (HNO3), which bounds to aerosol particles. The bounded nitrate is finally washed out from atmosphere by dry and wet deposition. Catalytic reactions of NOx are an important part of atmospheric chemistry forming or decomposing tropospheric ozone (O3). In atmosphere NO, NO2 and O3 are in photosta¬tionary equilibrium, therefore it is referred as NO-NO2-O3 triad. At regions with elevated NO concentrations reactions with air pollutions can form NO2, altering equilibrium of ozone formation.rnThe essential nutrient nitrogen is taken up by plants mainly by dissolved NO3- entering the roots. Atmospheric nitrogen is oxidized to NO3- within soil via bacteria by nitrogen fixation or ammonium formation and nitrification. Additionally atmospheric NO2 uptake occurs directly by stomata. Inside the apoplast NO2 is disproportionated to nitrate and nitrite (NO2-), which can enter the plant metabolic processes. The enzymes nitrate and nitrite reductase convert nitrate and nitrite to ammonium (NH4+). NO2 gas exchange is controlled by pressure gradients inside the leaves, the stomatal aperture and leaf resistances. Plant stomatal regulation is affected by climate factors like light intensity, temperature and water vapor pressure deficit. rnThis thesis wants to contribute to the comprehension of the effects of vegetation in the atmospheric NO2 cycle and to discuss the NO2 compensation point concentration (mcomp,NO2). Therefore, NO2 exchange between the atmosphere and spruce (Picea abies) on leaf level was detected by a dynamic plant chamber system under labo¬ratory and field conditions. Measurements took place during the EGER project (June-July 2008). Additionally NO2 data collected during the ECHO project (July 2003) on oak (Quercus robur) were analyzed. The used measuring system allowed simultaneously determina¬tion of NO, NO2, O3, CO2 and H2O exchange rates. Calculations of NO, NO2 and O3 fluxes based on generally small differences (∆mi) measured between inlet and outlet of the chamber. Consequently a high accuracy and specificity of the analyzer is necessary. To achieve these requirements a highly specific NO/NO2 analyzer was used and the whole measurement system was optimized to an enduring measurement precision.rnData analysis resulted in a significant mcomp,NO2 only if statistical significance of ∆mi was detected. Consequently, significance of ∆mi was used as a data quality criterion. Photo-chemical reactions of the NO-NO2-O3 triad in the dynamic plant chamber’s volume must be considered for the determination of NO, NO2, O3 exchange rates, other¬wise deposition velocity (vdep,NO2) and mcomp,NO2 will be overestimated. No significant mcomp,NO2 for spruce could be determined under laboratory conditions, but under field conditions mcomp,NO2 could be identified between 0.17 and 0.65 ppb and vdep,NO2 between 0.07 and 0.42 mm s-1. Analyzing field data of oak, no NO2 compensation point concentration could be determined, vdep,NO2 ranged between 0.6 and 2.71 mm s-1. There is increasing indication that forests are mainly a sink for NO2 and potential NO2 emissions are low. Only when assuming high NO soil emissions, more NO2 can be formed by reaction with O3 than plants are able to take up. Under these circumstance forests can be a source for NO2.
Resumo:
Dissertação mest., Gestão da água e da costa, Universidade do Algarve, 2007
Resumo:
Agricultural management of grassland in lowland Britain has changed fundamentally in the last 50 years, resulting in spatial and structural uniformity within the pastoral landscape. The full extent to which these changes may have reduced the suitability of grassland as foraging habitat for birds is unknown. This study investigated the mechanisms by which these changes have impacted on birds and their food supplies. We quantified field use by birds in summer and winter in two grassland areas of lowland England (Devon and Buckinghamshire) over 3 years, relating bird occurrence to the management, sward structure and seed and invertebrate food resources of individual fields. Management intensity was defined in terms of annual nitrogen input. There was no consistent effect of management intensity on total seed head production, although those of grasses generally increased with inputs while forbs were rare throughout. Relationships between management intensity and abundance of soil and epigeal invertebrates were complex. Soil beetle larvae were consistently lower in abundance, and surface-active beetle larvae counts consistently higher, in intensively managed fields. Foliar invertebrates showed more consistent negatively relationships with management intensity. Most bird species occurred at low densities. There were consistent relationships across regions and years between the occurrence of birds and measures of field management. In winter, there was a tendency towards higher occupancy of intensively managed fields by species feeding on soil invertebrates. In summer, there were few such relationships, although many species avoided fields with tall swards. Use of fields by birds was generally not related to measures of seed or invertebrate food abundance. While granivorous species were perhaps too rare to detect a relationship, in insectivores the strong negative relationships (in summer) with sward height suggested that access to food may be the critical factor. While it appears that intensification of grassland management has been deleterious to the summer food resources of insectivorous birds that use insects living within the grass sward, intensification may have been beneficial to several species in winter through the enhancement of soil invertebrates. Synthesis and applications. We suggest that attempts to restore habitat quality for birds in grassland landscapes need to create a range of management intensities and sward structures at the field and farm scales. A greater understanding of methods to enhance prey accessibility, as well as abundance, for insectivorous birds is required.
Resumo:
This paper reports the results of a 2-year study of water quality in the River Enborne, a rural river in lowland England. Concentrations of nitrogen and phosphorus species and other chemical determinands were monitored both at high-frequency (hourly), using automated in situ instrumentation, and by manual weekly sampling and laboratory analysis. The catchment land use is largely agricultural, with a population density of 123 persons km−2. The river water is largely derived from calcareous groundwater, and there are high nitrogen and phosphorus concentrations. Agricultural fertiliser is the dominant source of annual loads of both nitrogen and phosphorus. However, the data show that sewage effluent discharges have a disproportionate effect on the river nitrogen and phosphorus dynamics. At least 38% of the catchment population use septic tank systems, but the effects are hard to quantify as only 6% are officially registered, and the characteristics of the others are unknown. Only 4% of the phosphorus input and 9% of the nitrogen input is exported from the catchment by the river, highlighting the importance of catchment process understanding in predicting nutrient concentrations. High-frequency monitoring will be a key to developing this vital process understanding.
Resumo:
The increasing of pollution in aquatic ecosystems in the last decades has caused an expansion of eutrophication and loss of water quality for human consumption. The increase of frequency and intensity of cyanobacteria blooms have been recognized as a major problem connected to water quality and eutrophication. The knowledge of environmental factors controlling these blooms is a key step towards the management for recovering aquatic ecosystems from eutrophic conditions. Primary productivity in aquatic ecosystems is dependent on light and nutrients availability. In the present work we evaluated the relative importance of the concentration of major nutrients, such as phosphorus and nitrogen, and light for phytoplankton growth in the main water reservoir of Rio Grande do Norte State, named Engenheiro Armando Ribeiro Gonçalves (EARG), which is an eutrophic system, dominated by potentially toxic cyanobacteria populations. Limitation of phytoplankton growth was evaluated through bioassays using differential enrichment of nutrients (N and/or P) under two light conditions (low light and high light) and monthly monitoring of chlorophyll-a and nutrients (total nitrogen and phosphorus) concentrations, and water transparency (Secchi depth) at the pelagic region. Our results confirm that EARG reservoir is an eutrophic system with a low water quality. Results of bioassays on the growth of phytoplankton limitation (N or P) were conflicting with the results predicted by the TN:TP ratios, which indicates that these ratios were not a good indicator of algal growth limitation. Nitrogen was the limiting nutrient, considering both frequency and magnitude. Light and hidrology affected phytoplankton response to nutrient enrichment. The extreme eutrophic conditions of this reservoir, dominated by cyanobacteria blooms, demand urgent managing strategies in order to guarantee the multiple uses for this system, including water supply for human population. Although nitrogen is the limiting nutrient, an effective management program must focus on the reduction of both phosphorus and nitrogen input
Resumo:
The Asian monsoon system governs seasonality and fundamental environmental characteristics in the study area from which two distinct peculiarities are most notable: upwelling and convective mixing in the Arabian Sea and low surface salinity and stratification in the Bay of Bengal due to high riverine input and monsoonal precipitation. The respective oceanography sets the framework for nutrient availability and productivity. Upwelling ensures high nitrate concentration with temporal/spatial Si limitation; freshwater-induced stratification leads to reduced nitrogen input from the subsurface but Si enrichment in surface waters. Ultimately, both environments support high abundance of diatoms, which play a central role in the export of organic matter. It is speculated that, additional to eddy pumping, nitrogen fixation is a source of N in stratified waters and contributes to the low-d15N signal in sinking particles formed under riverine impact. Organic carbon fluxes are best correlated to opal but not to carbonate, which is explained by low foraminiferal carbonate fluxes within the river-impacted systems. This observation points to the necessity of differentiating between carbonate sources for carbon flux modeling. As evident from a compilation of previously published and new data on labile organic matter composition (amino acids and carbohydrates), organic matter fluxes are mainly driven by direct input from marine production, except the site off Pakistan where sedimentary input of (marine) organic matter is dominant during the NE monsoon. The explanation of apparently different organic carbon export efficiency calls for further investigations of, for example, food web structure and water column processes.
Resumo:
Considering the important role of N2 fixation for primary productivity and CO2 sequestration, it is crucial to assess the response of diazotrophs to ocean acidification. Previous studies on the genus Trichodesmium suggested a strong sensitivity towards ocean acidification. In view of the large functional diversity in N2 fixers, the objective of this study was to improve our knowledge of the CO2 responses of other diazotrophs. To this end, the single-celled Cyanothece sp. and two heterocystous species, Nodularia spumigena and the symbiotic Calothrix rhizosoleniae, were acclimated to two pCO2 levels (380 vs. 980 µatm). Growth rates, cellular composition (carbon, nitrogen and chlorophyll a) as well as carbon and N2 fixation rates (14C incorporation, acetylene reduction) were measured and compared to literature data on different N2 fixers. The three species investigated in this study responded differently to elevated pCO2, showing enhanced, decreased as well as unaltered growth and production rates. For instance, Cyanothece increased production rates with pCO2, which is in line with the general view that N2 fixers benefit from ocean acidification. Due to lowered growth and production of Nodularia, nitrogen input to the Baltic Sea might decrease in the future. In Calothrix, no significant changes in growth or production could be observed, even though N2 fixation was stimulated under elevated pCO2. Reviewing literature data confirmed a large variability in CO2 sensitivity across diazotrophs. The contrasting response patterns in our and previous studies were discussed with regard to the carbonate chemistry in the respective natural habitats, the mode of N2 fixation as well as differences in cellular energy limitation between the species. The group-specific CO2 sensitivities will impact differently on future biogeochemical cycles of open-ocean environments and systems like the Baltic Sea and should therefore be considered in models estimating climate feedback effects.
Resumo:
Coral reefs face unprecedented threats throughout most of their range. Poorly planned coastal development has contributed increased nutrients and sewage contamination to coastal waters, smothering some corals and contributing to overgrowth by macroalgae. My approach to assessing the degree to which coral reef ecosystems have been influenced by terrestrial and anthropogenic organic carbon inputs is through the use of carbon (C) and nitrogen (N) stable isotopes and lipid biomarkers in a marine protected area, the Coral Reef System of Veracruz: Parque Nacional Sistema Arrecifal Veracruzano (PNSAV) in the southwest Gulf of Mexico. Firstly, I used a C and N stable isotope mixing model and a calculated fatty acid (FA) retention factor to reveal the primary producer sources that fuel the coral reef food web. Secondly, I used lipid classes, FA and sterol biomarkers to determine production of terrestrial and marine biogenic material of nutritional quality to pelagic and benthic organisms. Finally, I used coprostanol to determine pollutant loading from sewage in the suspended particulate matter. Results indicate that phytoplankton is the major source of essential metabolite FA for marine fish and that dietary energy from terrestrial sources such as mangroves are transferred to juvenile fish, while seagrass non-essential FA are transferred to the entire food web mainly in the rainy season. Sea urchins may be the main consumers of brown macroalgae, especially in the dry season, while surgeon fish prefer red algae in both dry and rainy seasons. C and N isotopic values and the ratio C:N suggest that fertilizer is the principal source of nitrogen to macroalgae. Thus nitrogen supply also favored phytoplankton and seagrass growth leading to a better nutritional condition and high retention of organic carbon in the food web members during the rainy season when river influence increases. However, the great star coral Montastrea cavernosa nutritional condition decreased significantly in the rainy season. The nearest river to the PNSAV was polluted in the dry season; however, a dilution effect was detected in the rainy season, when some coral reefs were contaminated. In 2013, a new treatment plant started working in the area. I would suggest monitoring δ¹⁵N and the C: N ratio in macroalgae as indicators of the nitrogen input and coprostanol as an indicator of human feces pollution in order to verify the efficiency of the new treatment plant as part of the management program of the PNSAV.
Resumo:
The increasing advancement of agriculture makes providing adequate conditions for the growth and development of plants is the primary purpose of soil management systems. Much of the success of PD is attributed to cultural remains left by cover crops that do not require high nitrogen inputs and can thus be used to reduce nitrogen input in the agro- ecosystem. The nitrogen is one of the elements applied in agriculture, it is absorbed in higher quantities and limiting the yield of grain crops such as corn. Thus, there has been the influence of the no-till and conventional tillage combined with different crops of winter cover and bare soil when in succession to corn, on mineral nitrogen content. The experimental work was made at the experimental station of the Agronomic Institute of Paraná - Iapar. The implemented design was blocks at random split plot with three replications in factorial 6 x 2 x 3 x 5. The main plots were as treatment, beyond the bare soil, 5 winter species (ryegrass, vetch, vetch + oat, oat and radish), while in the subplots were used two tillage systems (No-till and conventional tillage). Three collections made were (before management, the urea before and after the urea), these being held in 5 depths (0-5, 5-10, 10-20, 20-40 and 40-60 cm). So a layer 0-5 cm and a que presents increased amount to NH4 + ion. The use of associated PD system in the presence of winter cover crops decreased as NO3 - losses in soil profile.
Resumo:
Dissertação de Mestrado, Engenharia Agronómica, 20 de Julho de 2016, Universidade dos Açores.
Resumo:
The effect of fish farming on dissolved amino acid concentrations, bacterioplankton abundance and exoproteolytic activity was assessed in 3 experimental marine ponds. Different standing stocks of fish were introduced (semi-intensive pond: 250 g.m(-2); semi-extensive pond: 50 g.m(-2) control pond: 0). Sea bass farming increased dissolved combined amino acid (DCAA) concentrations only in the semi-intensive pond. Bacterial standing stock was unaffected by fish food supply. However, bacterial exoproteolytic activity was strongly stimulated by aquaculture intensification; the average maximal rate of dissolved protein hydrolysis (V-m) increased with intensity (control pond: 1 500 nM.h(-1); semi-extensive pond: 2 600 nM.h(-1) semi-intensive pond: 5 100 nM.h(-1)). DCAA fluxes through bacterial exoproteolytic activity ranged between 16 (semi-extensive) and 11% (semi-intensive) of the daily nitrogen input by fish food. Bacterial exoproteolytic activity allowed a substantial part of the increased supply of dissolved amino nitrogen to be incorporated into bacterial biomass, then available for transfer to higher trophic levels within the ponds. It also significantly decreased dissolved organic nitrogen export from the ponds to the surrounding environment.
Resumo:
Nitrous oxide (N2O) is a major greenhouse gas (GHG) product of intensive agriculture. Fertilizer nitrogen (N) rate is the best single predictor of N2O emissions in row-crop agriculture in the US Midwest. We use this relationship to propose a transparent, scientifically robust protocol that can be utilized by developers of agricultural offset projects for generating fungible GHG emission reduction credits for the emerging US carbon cap and trade market. By coupling predicted N2O flux with the recently developed maximum return to N (MRTN) approach for determining economically profitable N input rates for optimized crop yield, we provide the basis for incentivizing N2O reductions without affecting yields. The protocol, if widely adopted, could reduce N2O from fertilized row-crop agriculture by more than 50%. Although other management and environmental factors can influence N2O emissions, fertilizer N rate can be viewed as a single unambiguous proxy—a transparent, tangible, and readily manageable commodity. Our protocol addresses baseline establishment, additionality, permanence, variability, and leakage, and provides for producers and other stakeholders the economic and environmental incentives necessary for adoption of agricultural N2O reduction offset projects.