796 resultados para nitro olefins


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The first organocatalytic asymmetric reaction of 3-isothiocyanatooxindoles with nitro olefins has been developed by using a cinchonidine-derived bifunctional catalyst. The resulting products, highly functionalized 3,2-pyrrolidinyl-substituted spirooxindole derivatives, were obtained in high yields with good diastereo- and enantioselectivities (up to dr >20:1 and er = 96:4). This Michael addition/cyclization cascade reaction employs monosubstituted nitro olefins and complements the Zn-II-catalyzed variant, which is only applicable to disubstituted nitro olefins.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A new homo-proline tetrazole derivative 7 has been prepared and shown to have improved properties for achieving asymmetric Michael addition of carbonyl compounds to nitro-olefins.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Old Yellow Enzyme has been shown to catalyze efficiently the NADPH-linked reduction of nitro-olefins. The reduction of the nitro-olefin proceeds in a stepwise fashion, with formation of a nitronate intermediate that is freely dissociable from the enzyme. The first step involves hydride transfer from the enzyme-reduced flavin to carbon 2 of the nitro-olefin. The protonation of the nitronate at carbon 1 to form the final nitroalkane product also is catalyzed by the enzyme and involves Tyr-196 as an active site acid/base. This residue also is involved in aci-nitro tautomerization of nitroalkanes, the first example of a nonredox reaction catalyzed by the enzyme.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Reaction of a ditopic urea ``strut'' (L-1) with cis-(tmen)Pd(NO3)(2) yielded a 3+3] self-assembled molecular triangle (T)L-1 = 1,4-di(4-pyridylureido)benzene; tmen = N,N,N',N'-tetrame-thylethane-1,2-diamine]. Replacing cis-(tmen)Pd(NO3)(2) in the above reaction with an equimolar mixture of Pd(NO3)(2) and a clip-type donor (L-2) yielded a template-free multicomponent 3D trigonal prism (P) decorated with multiple urea moieties L-2 = 3,3'-(1H-1,2,4-triazole-3,5-diyl)dipyridine]. This prism (P) was characterized by NMR. spectroscopy, and the structure was confirmed by X-ray crystallography. The P was employed as an effective hydrogen-bond-donor catalyst for Michael reactions of a series of water-insoluble nitro-olefins in an aqueous medium. The P showed better catalytic activity compared to the urea based ligand L-1 and the triangle T. Moreover, the confined nanospace of P in addition to large product outlet windows makes this 3D architecture a perfect molecular vessel to catalyze Diels-Alder reactions of 9-hydroxymethylanthracene with N-substituted maleimide in the aqueous medium. The present results demonstrate new observations on catalytic aqueous Diels-Alder and Michael reactions in heterogeneous fashion employing a discrete 3D architecture of Pd(II). The prism was recycled by simple filtration and reused several tithes without significant loss of activity.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

[EN] The purpose of this review article is to illustrate synthetic aspects of functionalized phosphorus derivatives containing an oximo moiety at the beta-position. First section will be focused on the synthesis of phosphine oxides, phosphonates or phosphonium salts containing an oxime group. The synthesis of these derivatives comprises the carbon–phosphorus single bond construction by reaction of haloximes with phosphorus derivatives, nucleophilic addition of phosphorus reagents to carbonyl compounds, or nucleophilic addition of phosphorus reagents to nitro olefins. This section will also concentrate on the most practical routes for the synthesis of the target compounds, through carbon–nitrogen double bond formation, which are as follows: condensation processes of carbonyl compounds and hydroxylamine derivatives or addition of hydroxylamines to allenes or alkynes. The preparative use of beta-oximo phosphorus derivatives as synthetic intermediates will be discussed in a second section, comprising olefination reaction, oxidation of oximes to nitrile oxides by reaction at the C-N double bond of the oxime moiety, oxidation of these substrates to nitrosoalkenes, reduction to the corresponding hydroxylamines and some reactions at the hydroxyl group of the hydroxyimino moiety.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The stereoselective construction of complex molecules with multiple stereogenicity in a single step represents an extremely useful, but challenging approach to complexity in chemical synthesis. The development of organocatalytic cascade processes has proven useful in these studies, but reports where four or more stereocentres are created in a single step from just two achiral reagents are rare. Herein we report the development of a novel asymmetric domino Michael-Michael reaction between nitrohex-4-enoates and nitro-olefins to generate cyclohexanes of high complexity, including one with a quaternary centre, and one with five contiguous stereocentres. This methodology provides access to a range of useful nitrocyclohexane derivatives, including a novel class of a-lycorane-like structures.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The structures of the anhydrous 1:1 proton-transfer compounds of isonipecotamide (piperidine-4-carboxamide) with the three isomeric mononitro-substituted benzoic acids and 3,5-dinitrobenzoic acid, namely 4-carbamoylpiperidinium 2-nitrobenzoate (I), 4-carbamoylpiperidinium 3-nitrobenzoate (II), 4-carbamoylpiperidinium 4-nitrobenzoate (III), (C6H13N2O+ C7H4NO4-) and 4-carbamoylpiperidinium 3,5-dinitrobenzoate (IV) (C6H13N2O+ C7H5N2O6-)respectively, have been determined at 200 K. All salts form hydrogen-bonded structures: three-dimensional in (I), two-dimensional in (II) and (III) and one-dimensional in (IV). Featured in the hydrogen bonding of three of these [(I), (II) and (IV)] is the cyclic head-to-head amide--amide homodimer motif [graph set R2/2~(8)] through a duplex N---H...O association, the dimer then giving structure extension via either piperidinium or amide H-donors and carboxylate-O and in some examples [(II) and (IV)], nitro-O atom acceptors. In (I), the centrosymmetric amide-amide homodimers are expanded laterally through N-H...O hydrogen bonds via cyclic R2/4(8) interactions forming ribbons which extend along the c cell direction. These ribbons incorporate the 2-nitrobenzoate cations through centrosymmetric cyclic piperidine N-H...O(carboxyl) associations [graph set R4/4(12)], giving inter-connected sheets in the three-dimensional structure. In (II) in which no amide-amide homodimer is present, duplex piperidinium N-H...O(amide) hydrogen-bonding homomolecular associations [graph set R2/2(14)] give centrosymmetric head-to-tail dimers. Structure extension occurs through hydrogen-bonding associations between both the amide H-donors and carboxyl and nitro O-acceptors as well as a three-centre piperidinium N-H...O,O'(carboxyl) cyclic R2/1(4) association giving the two-dimensional network structure. In (III), the centrosymmetric amide-amide dimers are linked through the two carboxyl O-atom acceptors of the anions via bridging piperidinium and amide N-H...O,O'...H-N(amide) hydrogen bonds giving the two-dimensional sheet structure which features centrosymmetric cyclic R4/4(12) associations. In (IV), the amide-amide dimer is also centrosymmetric with the dimers linked to the anions through amide N-H...O(nitro) interactions. The piperidinium groups extend the structure into one-dimensional ribbons via N-H...O(carboxyl) hydrogen bonds. The structures reported here further demonstrate the utility of the isonipecotamide cation in molecular assembly and highlight the efficacy of the cyclic R2/2(8) amide-amide hydrogen-bonding homodimer motif in this process and provide an additional homodimer motif type in the head-to-tail R2/2(14) association.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

By definition, the two faces of a pi bond are equivalent.1 However, they are rendered nonequivalent in most molecules because of the absence of a plane of symmetry encompassing the double bond and the adjacent substituents. As a result, additions to trigonal centers from the two faces need not be equally facile. Exploiting this stereodifferentiation in a controlled manner represents one of the core problems in organic synthesis. Evidently, the factors which determine such diastereoselection need to be delineated in as much detail as possible.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

C15H10C1NO3, Mr=287.70, triclinic, PI, Z= 2, F(000)= 296, a = 5.422 (1), b = 9.624 (1), c= 12.636 (2) A, ~= 76.66 (2), fl= 78.67 (2), ~= 87.97 (2) ° , V=629.03 A 3, Din= 1.507 (3), Ox= 1.519Mgm -3, 2(CuKa)=l.5418A, p=26.25mm -~, T= 413 K, final R = 0.0577 for 1859 observed reflections [I>2.5e(/)]. Bond lengths [1.512(5)A] and angles [109.2 (3) °] at the phenyl substitution site are comparable with those in other molecules. The bond angle at the nitro substitution site C(7)-C(8)-C(9) is 122.9 (3) ° owing to the electron-withdrawing character of the nitro group. The pyran ring adapts a half-chair conformation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Photochemical transformations of organic solids provide an exciting area of research with new synthetic possibilities. These reactions are generally governed by topochemical factors rather than the normal rules of chemical reactivity. Defects play a crucial role in some of the reactions. Some of the transformations such as the photodimerization of 4, 4'-dimethoxystilbene occur in a single crystal fashion.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The commodity plastics that are used in our everyday lives are based on polyolefin resins and they find wide variety of applications in several areas. Most of the production is carried out in catalyzed low pressure processes. As a consequence polymerization of ethene and α-olefins has been one of the focus areas for catalyst research both in industry and academia. Enormous amount of effort have been dedicated to fine tune the processes and to obtain better control of the polymerization and to produce tailored polymer structures The literature review of the thesis concentrates on the use of Group IV metal complexes as catalysts for polymerization of ethene and branched α-olefins. More precisely the review is focused on the use of complexes bearing [O,O] and [O,N] type ligands which have gained considerable interest. Effects of the ligand framework as well as mechanical and fluxional behaviour of the complexes are discussed. The experimental part consists mainly of development of new Group IV metal complexes bearing [O,O] and [O,N] ligands and their use as catalysts precursors in ethene polymerization. Part of the experimental work deals with usage of high-throughput techniques in tailoring properties of new polymer materials which are synthesized using Group IV complexes as catalysts. It is known that the by changing the steric and electronic properties of the ligand framework it is possible to fine tune the catalyst and to gain control over the polymerization reaction. This is why in this thesis the complex structures were designed so that the ligand frameworks could be fairly easily modified. All together 14 complexes were synthesised and used as catalysts in ethene polymerizations. It was found that the ligand framework did have an impact within the studied catalyst families. The activities of the catalysts were affected by the changes in complex structure and also effects on the produced polymers were observed: molecular weights and molecular weight distributions were depended on the used catalyst structure. Some catalysts also produced bi- or multi-modal polymers. During last decade high-throughput techniques developed in pharmaceutical industries have been adopted into polyolefin research in order to speed-up and optimize the catalyst candidates. These methods can now be regarded as established method suitable for both academia and industry alike. These high-throughput techniques were used in tailoring poly(4-methyl-1-pentene) polymers which were synthesized using Group IV metal complexes as catalysts. This work done in this thesis represents the first successful example where the high-throughput synthesis techniques are combined with high-throughput mechanical testing techniques to speed-up the discovery process for new polymer materials.