75 resultados para nitrides
Resumo:
Plates of NbTi (50:50, by weight) were nitrided in a nitrogen atmosphere in the temperature range 800-1000 °C for 15, 30, 60, 120 and 180 min. X-Ray diffraction and optical and electronic microscopy were used to characterize the samples. Two nitride layers were identified on the substrate: an external and continuous phase of TiN, named δ, and a deeper and discontinuous phase of Ti 2N, named ε{lunate}. The electron micrographs reveal the presence of paths rich in Nb which may be responsible for the diffusion of nitrogen into the matrix. © 1993.
Resumo:
III-nitrides are wide-band gap materials that have applications in both electronics and optoelectronic devices. Because to their inherent strong polarization properties, thermal stability and higher breakdown voltage in Al(Ga,In)N/GaN heterostructures, they have emerged as strong candidates for high power high frequency transistors. Nonetheless, the use of (Al,In)GaN/GaN in solid state lighting has already proved its success by the commercialization of light-emitting diodes and lasers in blue to UV-range. However, devices based on these heterostructures suffer problems associated to structural defects. This thesis primarily focuses on the nanoscale electrical characterization and the identification of these defects, their physical origin and their effect on the electrical and optical properties of the material. Since, these defects are nano-sized, the thesis deals with the understanding of the results obtained by nano and micro-characterization techniques such as atomic force microscopy(AFM), current-AFM, scanning kelvin probe microscopy (SKPM), electron beam induced current (EBIC) and scanning tunneling microscopy (STM). This allowed us to probe individual defects (dislocations and cracks) and unveil their electrical properties. Taking further advantage of these techniques,conduction mechanism in two-dimensional electron gas heterostructures was well understood and modeled. Secondarily, origin of photoluminescence was deeply investigated. Radiative transition related to confined electrons and photoexcited holes in 2DEG heterostructures was identified and many body effects in nitrides under strong optical excitations were comprehended.
Resumo:
The achievement of higher frequencies (HF) and the reduction of energy consumption, to improve sensing, communication and computation, involve the continued scaling down to the nanometer level. This scaling is enabled by of innovative device designs, improved processing technologies and assessment tools, and new material structures. In this work, we have used all these factors to demonstrate state-of-the-art HF devices in two materials with quite different electronic properties: wide semiconductor bandgap III-nitrides for resonators and power amplifiers; and graphene, a zero bandgap material expected to revolutionize low noise and HF flexible electronics. Some issues faced during their development will be discussed during the talk.
Resumo:
he nitrogen content dependence of the electronic properties for copper nitride thin films with an atomic percentage of nitrogen ranging from 26 ± 2 to 33 ± 2 have been studied by means of optical (spectroscopic ellipsometry), thermoelectric (Seebeck), and electrical resistivity measurements. The optical spectra are consistent with direct optical transitions corresponding to the stoichiometric semiconductor Cu3N plus a free-carrier contribution, essentially independent of temperature, which can be tuned in accordance with the N-excess. Deviation of the N content from stoichiometry drives to significant decreases from − 5 to − 50 μV/K in the Seebeck coefficient and to large enhancements, from 10− 3 up to 10 Ω cm, in the electrical resistivity. Band structure and density of states calculations have been carried out on the basis of the density functional theory to account for the experimental results.
Resumo:
We study the evolution of structural defects in AlxGa1-xN films (with x=0.0-0.6) bombarded with kilo-electron-volt heavy ions at 77 and 300 K. We use a combination of Rutherford backscattering/channeling spectrometry and cross-sectional transmission electron microscopy. Results show that an increase in Al content not only strongly enhances dynamic annealing processes but can also change the main features of the amorphization behavior. In particular, the damage buildup behavior at 300 K is essentially similar for all the AlGaN films studied. Ion-beam-produced disorder at 300 K accumulates preferentially in the crystal bulk region up to a certain saturation level (similar to50%-60% relative disorder). Bombardment at 300 K above a critical fluence results in a rapid increase in damage from the saturation level up to complete disordering, with a buried amorphous layer nucleating in the crystal bulk. However, at 77 K, the saturation effect of lattice disorder in the bulk occurs only for xgreater than or similar to0.1. Based on the analysis of these results for AlGaN and previously reported data for InGaN, we discuss physical mechanisms of the susceptibility of group-III nitrides to ion-beam-induced disordering and to the crystalline-to-amorphous phase transition. (C) 2004 American Institute of Physics.
Resumo:
Molybdenum and tungsten bimetallic oxides were synthetized according to the following methods: Pechini, coprecipitation and solid state reaction (SSR). After the characterization, those solids were carbureted at programmed temperature. The carburation process was monitored by checking the consumption of carburant hydrocarbon and CO produced. The monitoring process permits to avoid or to diminish the formation of pirolytic carbon.
Resumo:
The superiority of superaustenitic stainless steel (SASS) lies in its good weldability and great resistance to stress corrosion and pitting, because of its higher chromium, molybdenum, and nitrogen contents, when compared to general stainless steels. However, some of its applications are limited by very poor wear behavior. Plasma-nitriding is a very effective treatment for producing wear resistant and hard surface layers on stainless steels without compromising the corrosion resistance. In this work, UNS S31254 SASS samples were plasma-nitrided at three different temperatures (400, 450, and 500 degrees C), under a pressure of 500 Pa, for 5 h, in order to verify the influence of the temperature on the morphology, wear, and corrosion behavior of the modified surface layers. The plasma-nitrided samples were analyzed by means of optical microscopy, micro-hardness. X-ray diffraction, wear, and corrosion tests. Wear tests were conducted in a fixed ball micro-wear machine and corrosion behavior was carried out in natural sea water by means of potentiodynamic polarization curves. For the sample which was plasma-nitrided at 400 degrees C, only the expanded austenite phase was observed, and for the treatments performed at 450 and 500 degrees C, chromium nitrides (CrN and Cr(2)N) were formed in addition to the expanded austenite. Wear volume and Knoop surface hardness increased as the plasma-nitriding temperature increased. Higher wear rates were observed at high temperatures, probably due to the increment on layer fragility. The sample modified at 400 degrees C exhibited the best corrosion behavior among all the plasma-nitriding conditions. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Austenitic stainless steels cannot be conventionally surface treated at temperatures close to 550 degrees C due to intense precipitation of nitrides or carbides. Plasma carburizing allows introducing carbon in the steel at temperatures below 500 degrees C without carbide precipitation. Plasma carburizing of AISI 316L was carried out at 480 degrees C and 400 degrees C, during 20 h, using CH(4) as carbon carrier gas. The results show that carbon expanded austenite (gamma(c)), 20 mu m in depth, was formed on the surface after the 480 degrees C treatment. Carbon expanded austenite (gamma(c)), 8 mu m in depth, was formed on the surface after the 400 degrees C treatment. DRX results showed that the austenitic FCC lattice parameter increases from 0.358 nm to 0.363 nm for the 400 degrees C treatment and to 0.369 nm for the 480 degrees C treatment, giving an estimation of circa 10 at.% carbon content for the latter. Lattice distortion, resulting from the expansion and the associated compressive residual stresses increases the surface hardness to 1040 HV(0.025). Micro-scale tensile tests were conducted on specimens prepared with the conditions selected above, which has indicated that the damage imposed to the expanded austenite layer was more easily related to each separated grain than to the overall macro-scale stresses imposed by the tensile test. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
The distribution of Cr and N in a high-temperature gas-nitrided stainless steel was measured by using a scanning electron microscope-coupled wavelength-dispersive X-ray spectrometer and the results were related to the microhardness profile of the hardened case. The experimental spectrometric procedure was optimized to consistently measure N contents varying between 0.1 and 0.8 wt.% in martensite and between 18.3 and 21.6 wt.% in nitrides, as well as Cr contents ranging from 11.5 to 17.0 wt.%. (C) 2010 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Resumo:
Duplex and superduplex stainless steels present superior mechanical and corrosion properties when compared to usual stainless steels. This superiority is based on chemical composition when in a balanced microstructure (approximately 50% of ferrite). During welding, changes may occur in both, the chemical composition and volume fraction of phases in the material, which may generate the presence of intermetallic phases and, as a consequence, modify the mechanical and corrosion properties of this group of stainless steels. The objective of this work is to apply ASTM A923- Practice A to verify the presence of intermetallic phases in welded joints of UNS 32750 su-perduplex stainless steel. Tubes of UNS 32750, with external diameters of 18 and 44 mm and a thickness of 1.5 mm, were welded using orbital GTAW, with filler metal 25Cr-10Ni-4Mo and a diameter of 0.8 mm. The metal-based and welded joints were characterized by optical and scanning electron microscopy. The results showed that there was no precipitation of the intermetallic phase, such as sigma phase, detected by ASTM A923, but the HAZ of the two tubes studied presented small regions with chromium nitrides, which can also change the properties of welded joins.
Resumo:
Austenitic stainless steels cannot be conventionally nitrided at temperatures near 550 degrees C due to the intense precipitation of chromium nitrides in the diffusion zone. The precipitation of chro-mium nitrides increases the hardness but severely impairs corrosion resistance. Plasma nitriding allows introducing nitrogen in the steel at temperatures below 450 degrees C, forming pre-dominantly expanded austenite (gamma(N)), with a crystalline structure best represented by a special triclin-ic lattice, with a very high nitrogen atomic concentration promoting high compressive residual stresses at the surface, increasing substrate hardness from 4 GPa up to 14 GPa on the nitrided case.
Resumo:
The ternary aluminium oxynitride (AlNxOy) system offers the possibility to obtain a wide range of properties by tailoring the ratio between pure Al, AlNx and AlOy and therefore opening a significant number of possible applications. In this work the thermal behaviour of AlNxOy thin films was analysed by modulated infrared radiometry (MIRR), taking as reference the binary AlOy and AlNx systems. MIRR is a non-contact and non-destructive thermal wave measurement technique based on the excitation, propagation and detection of temperature oscillations of very small amplitudes. The intended change of the partial pressure of the reactive gas (N2 and/or O2) influenced the target condition and hence the deposition characteristics which, altogether, affected the composition and microstructure of the films. Based on the MIRR measurements and their qualitative and quantitative interpretation, some correlations between the thermal transport properties of the films and their chemical/physical properties have been found. Furthermore, the potential of such technique applied in this oxynitride system, which present a wide range of different physical responses, is also discussed. The experimental results obtained are consistent with those reported in previous works and show a high potential to fulfil the demands needed for the possible applications of the systems studied. They are clearly indicative of an adequate thermal response if this particular thin film system is aimed to be applied in small sensor devices or in electrodes for biosignal acquisition, such as those for electroencephalography or electromyography as it is the case of the main research area that is being developed in the group.
Resumo:
Dissertação de mestrado integrado em Engenharia de Materiais
Resumo:
In the investigation of thin films of transition metal nitrides, an essential role is played by the accurate determination of their chemical composition. Actually the chemical composition depends on the deposition parameters and influences the optical properties. These relations are illustrated in thin films of TiNx and (Ti1-yVy)N-x deposited by reactive magnetron sputtering from composite targets of the elements. By variation of the nitrogen partial pressure and the target composition, different samples have been obtained. The chemical composition has been measured by electron probe microanalysis at low irradiation voltages. The optical properties are evaluated by ex-situ ellipsometry. Using the screened Drude model, they are correlated with the differences in composition. Adding vanadium or nitrogen in Ti-N is shown to have the same effect on the optical properties.
Resumo:
Nitrogen doped silicon (NIDOS) films have been deposited by low-pressure chemical vapor deposition from silane SiH4 and ammonia NH3 at high temperature (750°C) and the influences of the NH3/SiH4 gas ratio on the films deposition rate, refractive index, stoichiometry, microstructure, electrical conductivity, and thermomechanical stress are studied. The chemical species derived from silylene SiH2 into the gaseous phase are shown to be responsible for the deposition of NIDOS and/or (silicon rich) silicon nitride. The competition between these two deposition phenomena leads finally to very high deposition rates (100 nm/min) for low NH3/SiH4 gas ratio (R¿0.1). Moreover, complex variations of NIDOS film properties are evidenced and related to the dual behavior of the nitrogen atom into silicon, either n-type substitutional impurity or insulative intersticial impurity, according to the Si¿N atomic bound. Finally, the use of NIDOS deposition for the realization of microelectromechanical systems is investigated.