25 resultados para nisin
Resumo:
BACKGROUND: Nisin is a commercially available bacteriocin produced by Lactococcus lactis ATCC 11454 and used as a natural agent in the biopreservation of food. In the current investigation, milk whey, a byproduct from dairy industries was used as a fermentation substrate for the production of nisin. Lactococcus lactis ATCC 11454 was developed in a rotary shaker (30 degrees C/36 h/100 rpm) using two different media with milk whey (i) without filtration, pH 6.8, adjusted with NaOH 2 mol L-1 and without pH adjustment, both autoclaved at 121 degrees C for 30 min, and (ii) filtrated (1.20 mu m and 0.22 mu m membrane filter). These cultures were transferred five times using 5 mL aliquots of broth culture for every new volume of the respective media. RESULTS: The results showed that culture media composed of milk whey without filtration supplied L. lactis its adaptation needs better than filtrated milk whey. Nisin titers, in milk whey without filtration (pH adjusted), was 11120.13 mg L-1 in the second transfer, and up to 1628-fold higher than the filtrated milk whey, 6.83 mg.L-1 obtained in the first(t) transfer. CONCLUSIONS: Biological processing of milk byproducts (milk whey) can be considered a profitable alternative, generating high-value bioproducts and contributing to decreasing river disposals by dairy industries. (C) 2008 Society of Chemical Industry.
Resumo:
Nisin is a natural additive for conservation of food, and can also be used as a therapeutic agent. Nisin inhibits the outgrowth of spores, the growth of a variety of Gram-positive and Grain-negative bacteria. In this paper we present a potentially scalable and cost-effective way to purify commercial and biosynthesized in bioreactor nisin, including simultaneously removal of impurities and contaminants, increasing nisin activity. Aqueous two-phase micellar systems (ATPMS) are considered promising for bioseparation and purification purposes. Triton X-114 was chosen as the as phase-forming surfactant because it is relatively mild to proteins and it also forms two coexisting phases within a convenient temperature range. Nisin activity was determined by the agar diffusion assay utilizing Lactobacillus sake as a sensitive indicator microorganism. Results indicated that nisin partitions preferentially to the micelle rich-phase, despite the surfactant concentration tested, and its antimicrobial activity increases. The successful implementation of this peptide partitioning, from a suspension containing other compounds, represents an important step towards developing a separation method for nisin, and more generally, for other biomolecules of interest. (C) 2007 Elsevier Inc. All rights reserved.
Resumo:
Listeria monocytogenes was inoculated on the surface of sliced fermented sausages with no added sodium salt. The pathogen was progressively inactivated during the product shelf life (90 days). Antimicrobial packaging of fermented sausages with PVOH films containing nisin induced a more pronounced reduction of L. monocytogenes counts during refrigerated storage. HPP alone (600 MPa, 5 min, 12 °C) had no antimicrobial effect against L. monocytogenes at the studied conditions. Combination of HPP with antimicrobial packaging did not produce any extra protection against L. monocytogenes compared to antimicrobial packaging alone. The lack of effect of HPP on L. monocytogenes was attributed to a protective effect exerted by the low water activity of the product and its lactate content. These results reflect that antimicrobial packaging with the inclusion of nisin as a natural antimicrobial could be considered as an effective method to reduce the levels of L. monocytogenes in sliced fermented sausages with no added sodium salt
Resumo:
The combined action of nisin and lactacin F, two bacteriocins produced by lactic acid bacteria, is additive. In this report, the basis of this effect is examined. Channels formed by lactacin F were studied by experiments using planar lipid bilayers, and bactericidal effects were analyzed by flow cytometry. Lactacin F produced pores with a conductance of 1 ns in black lipid bilayers in 1 mM KClat 10 mV at 20°C. Pore formation was strongly dependent on voltage. Although lactacin F formed pores at very low potential (10 mV), the dependence was exponentialabov e 40 mV. The injuries induced by nisin and lactacin F in the membranes of Lactobacillus helveticus produced different flow cytometric profiles. Probably, when both bacteriocins are present, each acts separately; their cooperation may be due to an increase in the number of single membrane injuries
Resumo:
Nisin is a promising alternative to chemical preservatives for use as a natural biopreservative in foods. This bacteriocin has also potential biomedical applications. Lactic acid bacteria are commonly cultivated in expensive standard complex media. We have evaluated the cell growth and nisin production of Lactococcus lactis in a low-cost natural medium consisting of diluted skimmed milk in a 2-L bioreactor. The assays were performed at 30 degrees C for 56 h, at varying agitation speeds and airflow rates: (1) 200 rpm (no airflow, and airflow at 0.5, 1.0 and 2.0 L/min); (2) 100 rpm (no airflow, and airflow at 0.5 L/min). Nisin activity was evaluated using agar diffusion assays. The highest nisin concentration, 49.88 mg/L (3.3 log AU/mL or 1,995.29 AU/mL), was obtained at 16 h of culture, 200 rpm and no airflow (k(L)a = 5.29 x 10(-3)). These results show that a cultivation medium composed of diluted skimmed milk supports cell growth to facilitate nisin biosynthesis.
Resumo:
The efficacy of liposome-encapsulated nisin and bacteriocin-like substance (BLS) P34 to control growth of Listeria monocytogenes in Minas frescal cheese was investigated. Nisin and BLS P34 were encapsulated in partially purified soybean phosphatidylcholine (PC-1) and PC-1-cholesterol (7:3) liposomes. PC-1 nanovesicles were previously characterized. PC-1-cholesterol encapsulated nisin and BLS P34 presented, respectively, 218 nm and 158 nm diameters, zeta potential of -64 mV and -53 mV, and entrapment efficiency of 88.9% and 100%. All treatments reduced the population of L monocytogenes compared to the control during 21 days of storage of Minas frescal cheese at 7 degrees C. However, nisin and BLS P34 encapsulated in PC-1-cholesterol liposomes were less efficient in controlling L monocytogenes growth in comparison with free and PC-1 liposome-encapsulated bacteriocins. The highest inhibitory effect was observed for nisin and BLS P34 encapsulated in PC-1 liposomes after 10 days of storage of the product The encapsulation of bacteriocins in liposomes of partially purified soybean phosphatidylcholine may be a promising technology for the control of food-borne pathogens in cheeses. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
I lantibiotici sono molecole peptidiche prodotte da un gran numero di batteri Gram-positivi, posseggono attività antibatterica contro un ampio spettro di germi, e rappresentano una potenziale soluzione alla crescente problematica dei patogeni multi-resistenti. La loro attività consiste nel legame alla membrana del bersaglio, che viene quindi destabilizzata mediante l’induzione di pori che determinano la morte del patogeno. Tipicamente i lantibiotici sono formati da un “leader-peptide” e da un “core-peptide”. Il primo è necessario per il riconoscimento della molecola da parte di enzimi che effettuano modifiche post-traduzionali del secondo - che sarà la regione con attività battericida una volta scissa dal “leader-peptide”. Le modifiche post-traduzionali anticipate determinano il contenuto di amminoacidi lantionina (Lan) e metil-lantionina (MeLan), caratterizzati dalla presenza di ponti-tioetere che conferiscono maggior resistenza contro le proteasi, e permettono di aggirare la principale limitazione all’uso dei peptidi in ambito terapeutico. La nisina è il lantibiotico più studiato e caratterizzato, prodotto dal batterio L. lactis che è stato utilizzato per oltre venti anni nell’industria alimentare. La nisina è un peptide lungo 34 amminoacidi, che contiene anelli di lantionina e metil-lantionina, introdotti dall’azione degli enzimi nisB e nisC, mentre il taglio del “leader-peptide” è svolto dall’enzima nisP. Questo elaborato affronta l’ingegnerizzazione della sintesi e della modifica di lantibiotici nel batterio E.coli. In particolare si affronta l’implementazione dell’espressione eterologa in E.coli del lantibiotico cinnamicina, prodotto in natura dal batterio Streptomyces cinnamoneus. Questo particolare lantibiotico, lungo diciannove amminoacidi dopo il taglio del leader, subisce modifiche da parte dell’enzima CinM, responsabile dell’introduzione degli aminoacidi Lan e MeLan, dell’enzima CinX responsabile dell’idrossilazione dell’acido aspartico (Asp), e infine dell’enzima cinorf7 deputato all’introduzione del ponte di lisinoalanina (Lal). Una volta confermata l’attività della cinnamicina e di conseguenza quella dell’enzima CinM, si è deciso di tentare la modifica della nisina da parte di CinM. A tal proposito è stato necessario progettare un gene sintetico che codifica nisina con un leader chimerico, formato cioè dalla fusione del leader della cinnamicina e del leader della nisina. Il prodotto finale, dopo il taglio del leader da parte di nisP, è una nisina completamente modificata. Questo risultato ne permette però la modifica utilizzando un solo enzima invece di due, riducendo il carico metabolico sul batterio che la produce, e inoltre apre la strada all’utilizzo di CinM per la modifica di altri lantibiotici seguendo lo stesso approccio, nonché all’introduzione del ponte di lisinoalanina, in quanto l’enzima cinorf7 necessita della presenza di CinM per svolgere la sua funzione.
Resumo:
Listeria monocytogenes has previously been shown to adapt to a wide variety of environmental niches, principally those associated with low pH, and this compromises its control in food environments. An understanding of the mechanism(s) by which L. monocytogenes survives unfavourable environmental conditions will aid in developing new food processing methods to control the organism in foodstuffs. The present Study aimed to gain a further understanding of the physiological basis for the differential effects of one control strategy, namely the use of the lantibiotic nisin. Using propidium iodide (PI) to probe membrane integrity it was shown that L. monocytogenes Scott A was sensitive to nisin (8 ng mL(-1)) but this was growth phase dependent with stationary phase cells (OD600=1.2) being much more resistant than exponential phase cells (OD600=0.38). We demonstrate that, using a combination of techniques including fluorescence activated cell sorting (FACS), the membrane adaptations underpinning nisin resistance are triggered much earlier (OD600 < 0.5) than the onset of stationary phase. The significance of these findings in terms of mechanism and application are discussed. (c) 2005 Elsevier B.V.All rights reserved.
Resumo:
The bacteriocin class of antimicrobial peptides have emerged as a viable alternative to at least partially fill the void created by the end of the golden age of antibiotic discovery. Along with this potential use in a clinical setting, bacteriocins also play an important role as bio-preservatives in the food industry. This thesis focuses on a specific bacteriocin group, the lantibiotics (Lanthionine-containing antibiotics). Their numerous methods of appliance in a food setting and how their gene-encoded nature can be modified to improve on overall bioactivity and functionality are explored here. The use of a lantibiotic (lacticin 3147) producing starter culture to control the Crohn’s disease-linked pathogen Mycobacterium paratuberculosis was assessed in a raw milk cheese. Although lacticin 3147 production did not effectively control the pathogen, the study provided an impetus to employ a variety of PCR-based mutagenesis techniques with a view to the creation of enhanced lantibiotic derivatives. Through the use of these techniques, a number of enhanced derivatives were generated from the ‘hinge’ region of the nisin peptide. Furthermore, a derivative in which the three hinge amino acids were replaced with three alanines represents the first enhanced derivative of nisin to have been designed through a rational process. This derivative also formed the backbone for the creation of an active, trypsin resistant, variant. Through the employment of further mutagenesis methods a derivative was created with potential use as an oral anti-bacterial in the future. Finally a number of lead nisin derivatives were investigated to assess their anti- Streptococcus agalactiae ability, a mastitis associated pathogen. Also a system was developed to facilitate the large scale production of these candidates, or other nisin derivatives, from dairy substrates.
Resumo:
The abuse of antibiotics and the emergence of multi-drug resistant bacterial strains have created the need to explore alternative methods of controlling microbial pathogens. The bacteriocin family of antimicrobial peptides has been proposed as one such alternative to classic antibiotics. Nisin A belongs to the subgroup of bacteriocins called the lantibiotics, which contain several unusual amino acids as a consequence of enzyme-mediated post-translational modifications. As nisin is produced by generally regarded as safe (GRAS) microorganisms, it could potentially be applied in a clinical setting. However, as lantibiotics are naturally produced in such small quantities, this can hinder their industrial potential. In order to overcome this, several approaches can be utilised. For example, given the gene encoded nature of lantibiotics, genetic engineering approaches can be implemented in order to yield variants with enhanced properties. Here, the use of mutagenesis-based strategies was employed to obtain a derivative of nisin with enhanced bioactivity in vitro. Investigations with purified peptide highlighted the enhanced specific activity of this variant, nisin M21V, against food-borne Listeria monocytogenes strains. Furthermore, this specific enhanced bioactivity was evident in a mouse model of listeriosis. Reductions in bioluminescence and microbial counts in organs from infected mice were observed following treatment with nisin M21V compared to that of wild-type nisin A. Peptide bioengineering approaches were also implemented to obtain additional novel derivatives of nisin. The generation of “S5X” and “S33X” banks (representing a change of natural serines at positions 5 and 33 to all possible alternative residues) by a combination of site-saturation and site-directed mutagenesis led to the identification of several derivatives exhibiting improved stability. This allowed the rational design of variants with enhanced stability compared to that of wild type nisin. Another means of tackling issues associated with lantibiotic yield is to combine lantibiotics with other antimicrobials. This could circumvent the need for enhanced production while also reducing concentrations of the peptide antimicrobials. We observed that combinations of nisin variants and low levels of plant essential oils (thymol, carvacrol, trans-cinnamaldehyde) significantly controlled Gram negative foodborne pathogens in in vitro assays compared to nisin A-essential oil combinations. This enhanced control was also evident in model food systems. Nisin variants used in conjunction with carvacrol significantly reduced numbers of E. coli O157:H7 in apple juice while a commercial nisin preparation used in combination with citric acid significantly controlled C. sakazakii in infant milk formula. It is noteworthy that while nisin is generally associated with Gram positive targets, upon combination with plant essential oils the spectrum of inhibition was broadened to Gram negative targets.
Resumo:
The emergence and dissemination of multi-drug resistant pathogens is a global concern. Moreover, even greater levels of resistance are conferred on bacteria when in the form of biofilms (i.e., complex, sessile communities of bacteria embedded in an organic polymer matrix). For decades, antimicrobial peptides have been hailed as a potential solution to the paucity of novel antibiotics, either as natural inhibitors that can be used alone or in formulations with synergistically acting antibiotics. Here, we evaluate the potential of the antimicrobial peptide nisin to increase the efficacy of the antibiotics polymyxin and colistin, with a particular focus on their application to prevent biofilm formation of Pseudomonas aeruginosa. The results reveal that the concentrations of polymyxins that are required to effectively inhibit biofilm formation can be dramatically reduced when combined with nisin, thereby enhancing efficacy, and ultimately, restoring sensitivity. Such combination therapy may yield added benefits by virtue of reducing polymyxin toxicity through the administration of significantly lower levels of polymyxin antibiotics.
Resumo:
A critical step during Bacillus anthracis infection is the outgrowth of germinated spores into vegetative bacilli that proliferate and disseminate rapidly within the host. An important challenge exists for developing chemotherapeutic agents that act upon and kill B. anthracis immediately after germination initiation when antibiotic resistance is lost, but prior to the outgrowth into vegetative bacilli, which is accompanied by toxin production. Chemical agents must also function in a manner refractive to the development of antimicrobial resistance. In this thesis we have identified the lantibiotics as a class of chemotherapeutics that are predicted to satisfy these two criteria. The objective of this thesis was to evaluate the efficacy of nisin, a prototypical lantibiotic, in prevention of outgrowth of germinated B. anthracis spores. Like all lantibiotics, nisin is a ribosomally translated peptide that undergoes post-translational modification to form (methyl)lanthionine rings that are critical for antimicrobial activity. Our studies indicate that nisin rapidly inhibits the in vitro outgrowth of germinated B. anthracis Sterne 7702 spores. Although germination initiation was shown to be essential for nisin-dependent antimicrobial activity, nisin did not inhibit or promote germination initiation. Nisin irreversibly killed germinated spores by blocking the establishment of a membrane potential and oxidative metabolism, while not affecting the dissolution of the outer spore structures. The membrane permeability of the spore was increased by nisin, but germinated spores did not undergo full lysis. Nisin was demonstrated to localize to lipid II, which is the penultimate precursor for cell wall biogenesis. This localization suggests two possible independent mechanisms of action, membrane pore formation and inhibition of peptidoglycan synthesis. Structure-activity studies with a truncated form of nisin lacking the two C-terminal (methyl)lanthionine rings and with non-pore forming mutants indicated that membrane disruption is essential for nisin-dependent inhibition of spore outgrowth to prevent membrane potential establishment. Finally, utilizing an in vitro infection model, it was shown that nisin reduced the viability of B. anthracis spores within an infection resulting in increased survival of immune cells while reducing infection-mediated cytokine expression. Fluorescence microscopy indicated that nisin localizes with spores within phagosomes of peritioneal macrophages in germinating conditions. These data demonstrate the effectiveness of nisin, as a model lantibiotic, for preventing spore outgrowth. It is speculated that nisin targeting of lipid II, resulting in membrane perturbations, may be effective at inhibiting the outgrowth of spores prepared from bacteria across a number of species.
Resumo:
The burden of foodborne disease has large economic and social consequences worldwide. Despite strict regulations, a number of pathogens persist within the food environment, which is greatly contributed to by a build-up of resistance mechanisms and also through the formation of biofilms. Biofilms have been shown to be highly resistant to a number of antimicrobials and can be extremely difficult to remove once they are established. In parallel, the growing concern of consumers regarding the use of chemically derived antimicrobials within food has led to a drive toward more natural products. As a consequence, the use of naturally derived antimicrobials has become of particular interest. In this study we investigated the efficacy of nisin A and its bioengineered derivative M21A in combination with food grade additives to treat biofilms of a representative foodborne disease isolate of Listeria monocytogenes. Investigations revealed the enhanced antimicrobial effects, in liquid culture, of M21A in combination with citric acid or cinnamaldehyde over its wild type nisin A counterpart. Subsequently, an investigation was conducted into the effects of these combinations on an established biofilm of the same strain. Nisin M21A (0.1 μg/ml) alone or in combination with cinnamaldehyde (35 μg/ml) or citric acid (175 μg/ml) performed significantly better than combinations involving nisin A. All combinations of M21A with either citric acid or cinnamaldehyde eradicated the L. monocytogenes biofilm (in relation to a non-biofilm control). We conclude that M21A in combination with available food additives could further enhance the antimicrobial treatment of biofilms within the food industry, simply by substituting nisin A with M21A in current commercial products such as Nisaplin® (Danisco, DuPont).
Resumo:
Lactic acid bacteria ( LAB) are currently used by food industries because of their ability to produce metabolites with antimicrobial activity against gram-positive pathogens and spoilage microorganisms. The objectives of this study were to identify naturally occurring bacteriocinogenic or bacteriocinogenic-like LAB in raw milk and soft cheese and to detect the presence of nisin-coding genes in cultures identified as Lactococcus lactis. Lactic acid bacteria cultures were isolated from 389 raw milk and soft cheese samples and were later characterized for the production of antimicrobial substances against Listeria monocytogenes. Of these, 58 (14.9%) LAB cultures were identified as antagonistic; the nature of this antagonistic activity was then characterized via enzymatic tests to confirm the proteinaceous nature of the antimicrobial substances. In addition, 20 of these antagonistic cultures were selected and submitted to genetic sequencing; they were identified as Lactobacillus plantarum (n = 2) and Lactococcus lactis ssp. lactis (n = 18). Nisin genes were identified by polymerase chain reaction in 7 of these cultures. The identified bacteriocinogenic and bacteriocinogenic-like cultures were highly variable concerning the production and activity of antimicrobial substances, even when they were genetically similar. The obtained results indicated the need for molecular and phenotypic methodologies to properly characterize bacteriocinogenic LAB, as well as the potential use of these cultures as tools to provide food safety.
Resumo:
Listeria monocytogenes is of particular concern for the food industry due to its psychrotolerant and ubiquitous nature. In this work, the ability of L monocytogenes culturable cells to adhere to stainless steel coupons was studied in co-culture with the bacteriocin-producing food isolate Lactobacillus sakei 1 as well as in the presence of the cell-free neutralized supernatant of L sakei 1 (CFSN-S1) containing sakacin 1. Results were compared with counts obtained using a non bacteriocin-producing strain (L sakei ATCC 15521) and its bacteriocin free supernatant (CFSN-SA). Culturable adherent L monocytogenes and lactobacilli cells were enumerated respectively on PALCAM and MRS agars at 3-h intervals for up to 12 h and after 24 and 48 h of incubation. Bacteriocin activity was evaluated by critical dilution method. After 6 h of incubation, the number of adhered L monocytogenes cells in pure culture increased from 3.8 to 5.3 log CFU/cm(2) (48h). Co-culture with L sakei 1 decreased the number of adhered L monocytogenes cells (P < 0.001) during all sampling times with counts lower than 3.0 log CFU/cm(2). The CFNS-S1 also led to a significant and similar reduction in culturable adhered L. monocytogenes counts for up to 24 h of incubation, however after 48 h of incubation, re-growth of L monocytogenes number of adhered cells was observed, likely due to lack of competition for nutrients. L sakei ATCC 15521 or its supernatant (CFNS-SA) did not reduce the number of adhered L monocytogenes cells on stainless steel surface and from 6 h of incubation, listerial counts were between 4.3 and 4.5 log CFU/cm(2). These results indicate that L sakei 1 and its bacteriocin sakacin 1 may be useful to inhibit early stages of L monocytogenes adherence to abiotic surface. (C) 2011 Elsevier Ltd. All rights reserved.