959 resultados para nicotinic receptors


Relevância:

100.00% 100.00%

Publicador:

Resumo:

1. Intracellular recordings were made from neurones in the rat otic ganglion in vitro in order to investigate their morphological, physiological and synaptic properties. We took advantage of the simple structure of these cells to test for a possible role of calcium influx via nicotinic acetylcholine receptors during synaptic transmission. 2. Cells filled with biocytin comprised a homogeneous population with ovoid somata and sparse dendritic trees. Neurones had resting membrane potentials of -53 +/- 0.7 mV (n = 69), input resistances of 112 + 7 M Omega, and membrane time constants of 14 +/- 0.9 ms (n = 60). Upon depolarization, all cells fired overshooting action potentials which mere followed by an apamin-sensitive after-hyperpolarization (AHP). In response to a prolonged current injection, all neurones fired tonically. 3. The repolarization phase of action potentials had a calcium component which was mediated by N-type calcium channels. Application of omega-conotoxin abolished both the repolarizing hump and the after-hgrperpolarization suggesting that calcium influx via N-type channels activates SK-type calcium-activated potassium channels which underlie the AHP. 4. The majority (70%) of neurones received innervation from a single preganglionic fibre which generated a suprathreshold excitatory postsynaptic potential mediated by nicotinic acetylcholine receptors. The other 30% of neurones also had one or more subthreshold nicotinic inputs. 5. Calcium influx via synaptic nicotinic receptors contributed to the AHP current, indicating that this calcium has access to the calcium-activated potassium channels and therefore plays a role in regulating cell excitability.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Amphetamine derivatives such as methamphetamine (METH) and 3,4-methylenedioxymethamphetamine (MDMA, ecstasy) are drugs widely abused in a recreational context. This has led to concern because of the evidence that they are neurotoxic in animal models and cognitive impairments have been described in heavy abusers. The main targets of these drugs are plasmalemmal and vesicular monoamine transporters, leading to reverse transport and increased monoamine efflux to the synapse. As far as neurotoxicity is concerned, increased reactive oxygen species (ROS) production seems to be one of the main causes. Recent research has demonstrated that blockade of 7 nicotinic acetylcholine receptors (nAChR) inhibits METH- and MDMA-induced ROS production in striatal synaptosomes which is dependent on calcium and on NO-synthase activation. Moreover, 7 nAChR antagonists (methyllycaconitine and memantine) attenuated in vivo the neurotoxicity induced by METH and MDMA, and memantine prevented the cognitive impairment induced by these drugs. Radioligand binding experiments demonstrated that both drugs have affinity to 7 and heteromeric nAChR, with MDMA showing lower Ki values, while fluorescence calcium experiments indicated that MDMA behaves as a partial agonist on 7 and as an antagonist on heteromeric nAChR. Sustained Ca increase led to calpain and caspase-3 activation. In addition, modulatory effects of MDMA on 7 and heteromeric nAChR populations have been found.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have investigated the effect of nicotinic receptor ligands in the behavioral sensitization (hyperlocomotion) and rewarding properties (conditioned place preference paradigm, CPP) of 3,4-methylenedioxy-methamphetamine (MDMA) in mice. Each animal received intraperitoneal pretreatment with either saline, dihydro-β-erythroidine (DHβE, 1 mg/kg) or varenicline (VAR, 0.3 mg/kg), 15 min prior to subcutaneous saline or MDMA (5 mg/kg), for 10 consecutive days. On day 1, both DHβE and VAR inhibited the MDMA-induced hyperlocomotion. After 10 days of treatment, MDMA induced a hyperlocomotion that was not reduced (rather enhanced) in antagonist-pretreated animals. This early hyperlocomotion was accompanied by a significant increase in heteromeric nicotinic receptors in cortex that was not blocked by DHβE or VAR. Behavioral sensitization to MDMA was highest 2 weeks after the discontinuation of MDMA treatment. This additional increase in sensitivity was prevented in animals pretreated with DHβE or VAR. At this time, MDMA-treated mice showed a significant increase in heteromeric receptors in cortex that was prevented by DHβE and VAR. An involvement of α7 nicotinic receptors in this effect is ruled out. MDMA (10 mg/kg) induced positive CPP that was abolished by DHβE (2 mg/kg) and VAR (2 mg/kg). Moreover, chronic nicotine pretreatment (2 mg/kg, ip, b.i.d., for 14 days) caused MDMA, administered at a low dose (3 mg/kg), to induce CPP, which would otherwise not occur. Finally, present results point out that heteromeric nicotinic receptors are involved in locomotor sensitization and addictive potential induced by MDMA. Thus, varenicline might be a useful drug to treat both tobacco and MDMA abuse at once.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have investigated the effect of nicotinic receptor ligands in the behavioral sensitization (hyperlocomotion) and rewarding properties (conditioned place preference paradigm, CPP) of 3,4-methylenedioxy-methamphetamine (MDMA) in mice. Each animal received intraperitoneal pretreatment with either saline, dihydro-β-erythroidine (DHβE, 1 mg/kg) or varenicline (VAR, 0.3 mg/kg), 15 min prior to subcutaneous saline or MDMA (5 mg/kg), for 10 consecutive days. On day 1, both DHβE and VAR inhibited the MDMA-induced hyperlocomotion. After 10 days of treatment, MDMA induced a hyperlocomotion that was not reduced (rather enhanced) in antagonist-pretreated animals. This early hyperlocomotion was accompanied by a significant increase in heteromeric nicotinic receptors in cortex that was not blocked by DHβE or VAR. Behavioral sensitization to MDMA was highest 2 weeks after the discontinuation of MDMA treatment. This additional increase in sensitivity was prevented in animals pretreated with DHβE or VAR. At this time, MDMA-treated mice showed a significant increase in heteromeric receptors in cortex that was prevented by DHβE and VAR. An involvement of α7 nicotinic receptors in this effect is ruled out. MDMA (10 mg/kg) induced positive CPP that was abolished by DHβE (2 mg/kg) and VAR (2 mg/kg). Moreover, chronic nicotine pretreatment (2 mg/kg, ip, b.i.d., for 14 days) caused MDMA, administered at a low dose (3 mg/kg), to induce CPP, which would otherwise not occur. Finally, present results point out that heteromeric nicotinic receptors are involved in locomotor sensitization and addictive potential induced by MDMA. Thus, varenicline might be a useful drug to treat both tobacco and MDMA abuse at once.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nicotine (NIC), the main psychostimulant compound of smoked tobacco, exerts its effects through activation of central nicotinic acetylcholine receptors (nAChR), which become up-regulated after chronic administration. Recent work has demonstrated that the recreational drug 3,4-methylenedioxymethamphetamine (MDMA) has affinity for nAChR and also induces up-regulation of nAChR in PC 12 cells. Tobacco and MDMA are often consumed together. In the present work we studied the in vivo effect of a classic chronic dosing schedule of MDMA in rats, alone or combined with a chronic schedule of NIC, on the density of nAChR and on serotonin reuptake transporters. MDMA induced significant decreases in [3H]paroxetine binding in the cortex and hippocampus measured 24 h after the last dose and these decreases were not modified by the association with NIC. In the prefrontal cortex, NIC and MDMA each induced significant increases in [3H]epibatidine binding (29.5 and 34.6%, respectively) with respect to saline-treated rats, and these increases were significantly potentiated (up to 72.1%) when the two drugs were associated. Also in this area, [3H]methyllycaconitine binding was increased a 42.1% with NIC + MDMA but not when they were given alone. In the hippocampus, MDMA potentiated the a7 regulatory effects of NIC (raising a 25.5% increase to 52.5%) but alone was devoid of effect. MDMA had no effect on heteromeric nAChR in striatum and a coronal section of the midbrain containing superior colliculi, geniculate nuclei, substantia nigra and ventral tegmental area. Specific immunoprecipitation of solubilised receptors suggests that the up-regulated heteromeric nAChRs contain a4 and b2 subunits. Western blots with specific a4 and a7 antibodies showed no significant differences between the groups, indicating that, as reported for nicotine, up-regulation caused by MDMA is due to post-translational events rather than increased receptor synthesis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nicotinic acetylcholine receptors (AChRs) are pentameric proteins that form agonist-gated cation channels through the plasma membrane. AChR agonists and antagonists are potential candidates for the treatment of neurodegenerative diseases. Cembranoids are naturally occurring diterpenoids that contain a 14-carbon ring. These diterpenoids interact with AChRs in complex ways: as irreversible inhibitors at the agonist sites, as noncompetitive inhibitors, or as positive modulators, but no cembranoid was ever shown to have agonistic activity on AChRs. The cembranoid eupalmerin acetate displays positive modulation of agonist-induced currents in the muscle-type AChR and in the related gamma-aminobutyric acid (GABA) type A receptor. Moreover, cembranoids display important biological effects, many of them mediated by nicotinic receptors. Cembranoids from tobacco are neuroprotective through a nicotinic anti-apoptotic mechanism preventing excitotoxic neuronal death which in part could result from anti-inflammatory properties of cembranoids. Moreover, tobacco cembranoids also have anti-inflammatory properties which could enhance their neuroprotective properties. Cembranoids from tobacco affect nicotine-related behavior: they increase the transient initial ataxia caused by first nicotine injection into naive rats and inhibit the expression of locomotor sensitization to repeated injections of nicotine. In addition, cembranoids are known to act as anti-tumor compounds. In conclusion, cembranoids provide a promising source of lead drugs for many clinical areas, including neuroprotection, smoking-cessation, and anti-cancer therapies. (C) 2009 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Recent work has shown that strychnine, the potent and selective antagonist of glycine receptors, is also an antagonist of nicotinic acetylcholine (AcCho) receptors including neuronal homomeric α7 receptors, and that mutating Leu-247 of the α7 nicotinic AcCho receptor-channel domain (L247Tα7; mut1) converts some nicotinic antagonists into agonists. Therefore, a study was made of the effects of strychnine on Xenopus oocytes expressing the chick wild-type α7 or L247Tα7 receptors. In these oocytes, strychnine itself did not elicit appreciable membrane currents but reduced the currents elicited by AcCho in a reversible and dose-dependent manner. In sharp contrast, in oocytes expressing L247Tα7 receptors with additional mutations at Cys-189 and Cys-190, in the extracellular N-terminal domain (L247T/C189–190Sα7; mut2), micromolar concentrations of strychnine elicited inward currents that were reversibly inhibited by the nicotinic receptor blocker α-bungarotoxin. Single-channel recordings showed that strychnine gated mut2-channels with two conductance levels, 56 pS and 42 pS, and with kinetic properties similar to AcCho-activated channels. We conclude that strychnine is a modulator, as well as an activator, of some homomeric nicotinic α7 receptors. After injecting oocytes with mixtures of cDNAs encoding mut1 and mut2 subunits, the expressed hybrid receptors were activated by strychnine, similar to the mut2, and had a high affinity to AcCho like the mut1. A pentameric symmetrical model yields the striking conclusion that two identical α7 subunits may be sufficient to determine the functional properties of α7 receptors.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Knock-in mice were generated that harbored a leucine-to-serine mutation in the α4 nicotinic receptor near the gate in the channel pore. Mice with intact expression of this hypersensitive receptor display dominant neonatal lethality. These mice have a severe deficit of dopaminergic neurons in the substantia nigra, possibly because the hypersensitive receptors are continuously activated by normal extracellular choline concentrations. A strain that retains the neo selection cassette in an intron has reduced expression of the hypersensitive receptor and is viable and fertile. The viable mice display increased anxiety, poor motor learning, excessive ambulation that is eliminated by very low levels of nicotine, and a reduction of nigrostriatal dopaminergic function upon aging. These knock-in mice provide useful insights into the pathophysiology of sustained nicotinic receptor activation and may provide a model for Parkinson's disease.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Alzheimer's disease produces a devastating decline in mental function, with profound effects on learning and memory. Early consequences of the disease include the specific loss of cholinergic neurons in brain, diminished cholinergic signaling, and the accumulation of β-amyloid peptide in neuritic plaques. Of the nicotinic acetylcholine receptors at risk, the most critical may be those containing the α7 gene product (α7-nAChRs), because they are widespread, have a high relative permeability to calcium, and regulate numerous cellular events in the nervous system. With the use of whole-cell patch–clamp recording we show here that nanomolar concentrations of β-amyloid peptides specifically and reversibly block α7-nAChRs on rat hippocampal neurons in culture. The block is noncompetitive, voltage-independent, and use-independent and is mediated through the N-terminal extracellular domain of the receptor. It does not appear to require either calcium influx or G protein activation. β-Amyloid blockade is likely to be a common feature of α7-nAChRs because it applies to the receptors at both somato-dendritic and presynaptic locations on rat hippocampal neurons and extends to homologous receptors on chick ciliary ganglion neurons as well. Because α7-nAChRs in the central nervous system are thought to have numerous functions and recently have been implicated in learning and memory, impaired receptor function in this case may contribute to cognitive deficits associated with Alzheimer's disease.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Binding of agonists to nicotinic acetylcholine receptors generates a sequence of changes that activate a cation-selective conductance. By measuring electrophysiological responses in chimeric alpha7/alpha3 receptors expressed in Xenopus oocytes, we have showed the involvement of the M2-M3 loop in coupling agonist binding to the channel gate. An aspartate residue therein, Asp-266 in the alpha7 subunit, was identified by site-directed mutagenesis as crucial, since mutants at this position exhibited very poor functional responses to three different nicotinic agonists. We have extended this investigation to another neuronal nicotinic receptor (alpha3/beta4), and found that a homologous residue in the beta4 subunit, Asp-268, played a similar role in coupling. These findings are consistent with a hypothesis that the aspartate residue in the M2-M3 loop, which is conserved in all homomer-forming alpha-type subunits and all neuronal beta-type subunits that combine to form functional receptors, is a major determinant of information transmission from binding site to channel gate in all neuronal nicotinic receptors.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The present study describes the isolation of the first neurotoxin (acantoxin IVa) from Acanthophis sp. Seram death adder venom and an examination of its activity at nicotinic acetylcholine receptor (naChR) subtypes. Acantoxin IVa (MW 6815; 0.1-1.0 muM) caused concentration-dependent inhibition of indirect twitches (0.1 Hz, 0.2 ms, supramaximal V) and inhibited contractile responses to exogenous nicotinic agonists in the chick biventer cervicis nerve-muscle, confirming that this toxin is a postsynaptic neurotoxin. Acantoxin IVa (1-10 nM) caused pseudo-irreversible antagonism at skeletal muscle nAChR with an estimated pA(2) Of 8.36 +/- 0.17. Acantoxin IVa was approximately two-fold less potent than the long-chain (Type 11) neurotoxin, alpha-bungarotoxin. With a pK(i) value of 4.48, acantoxin IVa was approximately 25,000 times less potent than a-bungarotoxin at alpha7-type neuronal nAChR. However, in contrast to alpha-bungarotoxin, acantoxin IVa completely inhibited specific [H-3]-methyllycaconitine (MLA) binding in rat hippocampus homogenate. Acantoxin IVa had no activity at ganglionic nAChR, alpha4beta2 subtype neuronal nAChR or cytisine-resistant [H-3]-epibatidine binding sites. While long-chain neurotoxin resistant [H-3]-MLA binding in hippocampus homogenate requires further investigation, we have shown that a short-chain (Type 1) neurotoxin is capable of fully inhibiting specific [H-3]-MLA binding. (C) 2004 Elsevier Inc. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Double-labeling immunohistochemical methods were used to investigate the occurrence of the alpha8 and alpha5 nicotinic receptor subunits in presumptive GABAergic neurons of the chick nervous system. Nicotinic receptor immunoreactivity was often found in cells exhibiting GABA-like immunoreactivity, especially in the visual system. The alpha8 subunit appeared to be present in presumptive GABAergic cells of the ventral lateral geniculate nucleus, nucleus of the basal optic root of the accessory optic system, and the optic tectum, among several other structures. The alpha5 subunit was also found in GABA-positive neurons, as observed in the lentiform nucleus of the mesencephalon and other pretectal nuclei. The numbers of alpha8- and alpha5-positive neurons that were also GABA-positive represented high percentages of the total number of neurons containing nicotinic receptor labeling in several brain areas, which indicates that most of the alpha8 and alpha5 nicotinic receptor subunits are present in GABAergic cells. Taken together with data from other studies, our results indicate an important role of the nicotinic acetylcholine receptors in the functional organization of GABAergic circuits in the visual system.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The activity of alpha-conotoxin (alpha-CTX) lml, from the vermivorous marine snail Conus imperialis, has been studied on mammalian nicotinic receptors on bovine chromaffin cells and at the rat neuromuscular junction. Synthetic alpha-CTX lml was a potent inhibitor of the neuronal[ nicotinic response in bovine adrenal chromaffin cells (IC50 = 2.5 mu M, log IC50 = 0.4 +/- 0.07), showing competitive inhibition of nicotine-evoked catecholamine secretion. (alpha-CTX lml also inhibited nicotine-evoked Ca-45(2+) uptake but not Ca-45(2+) uptake stimulated by 56 mM Kr. In contrast, alpha-CTX lml had no effect at the neuromuscular junction over the concentration range 1-20 mu M. Bovine chromaffin cells are known to contain the alpha 3 beta 4, alpha 7, and (possibly) alpha 3 beta 4 alpha 5 subtypes. However, the secretory response of bovine chromaffin cells is not inhibited by alpha-bungarotoxin, indicating that alpha 7 nicotinic receptors are not involved. We propose that alpha-CTX lml interacts selectively with the functional (alpha 3 beta 4 or alpha 3 beta 4 alpha 5) nicotinic acetylcholine receptor to inhibit the neuronal-type nicotinic response in bovine chromaffin cells.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Previous studies indicate that 3,4-methylenedioxy-methamphetamine (MDMA, ecstasy) can induce heteromeric nicotinic acetylcholine receptor (nAChR, mainly of α4β2 subtype) up-regulation. In this study we treated Sprague-Dawley rats twice-daily for 10 days with either saline or MDMA (7 mg/kg) and killed them on day 11 to perform [125I]epibatidine binding autoradiograms on serial coronal slices. Results showed significant increases in nAChR density in the substantia nigra, ventral tegmental area, nucleus accumbens, olfactory tubercle, anterior caudate-putamen, somatosensory cortex, motor cortex, auditory cortex, retrosplenial cortex, laterodorsal thalamus nuclei, amygdala, postsubiculum and pontine nuclei. These increases ranged from 3% (retrosplenial cortex) to 30 and 33% (amygdala and substantia nigra). No increased α4 subunit immunoreactivity was found in up-regulated areas compared with saline-treated rats, suggesting a post-translational mechanism as occurs with nicotine. The percentage of up-regulation correlated positively with the density of serotonin transporters, according to the serotonergic profile of MDMA. The heteromeric nAChR increase in concrete areas could account, at least in part, for the reinforcing, sensitizing and psychiatric disorders observed after long-term treatment with MDMA.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Previous studies indicate that 3,4-methylenedioxy-methamphetamine (MDMA, ecstasy) can induce heteromeric nicotinic acetylcholine receptor (nAChR, mainly of α4β2 subtype) up-regulation. In this study we treated Sprague-Dawley rats twice-daily for 10 days with either saline or MDMA (7 mg/kg) and killed them on day 11 to perform [125I]epibatidine binding autoradiograms on serial coronal slices. Results showed significant increases in nAChR density in the substantia nigra, ventral tegmental area, nucleus accumbens, olfactory tubercle, anterior caudate-putamen, somatosensory cortex, motor cortex, auditory cortex, retrosplenial cortex, laterodorsal thalamus nuclei, amygdala, postsubiculum and pontine nuclei. These increases ranged from 3% (retrosplenial cortex) to 30 and 33% (amygdala and substantia nigra). No increased α4 subunit immunoreactivity was found in up-regulated areas compared with saline-treated rats, suggesting a post-translational mechanism as occurs with nicotine. The percentage of up-regulation correlated positively with the density of serotonin transporters, according to the serotonergic profile of MDMA. The heteromeric nAChR increase in concrete areas could account, at least in part, for the reinforcing, sensitizing and psychiatric disorders observed after long-term treatment with MDMA.