999 resultados para niche process
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Ecological niche modelling combines species occurrence points with environmental raster layers in order to obtain models for describing the probabilistic distribution of species. The process to generate an ecological niche model is complex. It requires dealing with a large amount of data, use of different software packages for data conversion, for model generation and for different types of processing and analyses, among other functionalities. A software platform that integrates all requirements under a single and seamless interface would be very helpful for users. Furthermore, since biodiversity modelling is constantly evolving, new requirements are constantly being added in terms of functions, algorithms and data formats. This evolution must be accompanied by any software intended to be used in this area. In this scenario, a Service-Oriented Architecture (SOA) is an appropriate choice for designing such systems. According to SOA best practices and methodologies, the design of a reference business process must be performed prior to the architecture definition. The purpose is to understand the complexities of the process (business process in this context refers to the ecological niche modelling problem) and to design an architecture able to offer a comprehensive solution, called a reference architecture, that can be further detailed when implementing specific systems. This paper presents a reference business process for ecological niche modelling, as part of a major work focused on the definition of a reference architecture based on SOA concepts that will be used to evolve the openModeller software package for species modelling. The basic steps that are performed while developing a model are described, highlighting important aspects, based on the knowledge of modelling experts. In order to illustrate the steps defined for the process, an experiment was developed, modelling the distribution of Ouratea spectabilis (Mart.) Engl. (Ochnaceae) using openModeller. As a consequence of the knowledge gained with this work, many desirable improvements on the modelling software packages have been identified and are presented. Also, a discussion on the potential for large-scale experimentation in ecological niche modelling is provided, highlighting opportunities for research. The results obtained are very important for those involved in the development of modelling tools and systems, for requirement analysis and to provide insight on new features and trends for this category of systems. They can also be very helpful for beginners in modelling research, who can use the process and the experiment example as a guide to this complex activity. (c) 2008 Elsevier B.V. All rights reserved.
Resumo:
A Work Project, presented as part of the requirements for the Award of a Masters Degree in Management from the NOVA – School of Business and Economics
Resumo:
1. Aim - Concerns over how global change will influence species distributions, in conjunction with increased emphasis on understanding niche dynamics in evolutionary and community contexts, highlight the growing need for robust methods to quantify niche differences between or within taxa. We propose a statistical framework to describe and compare environmental niches from occurrence and spatial environmental data.¦2. Location - Europe, North America, South America¦3. Methods - The framework applies kernel smoothers to densities of species occurrence in gridded environmental space to calculate metrics of niche overlap and test hypotheses regarding niche conservatism. We use this framework and simulated species with predefined distributions and amounts of niche overlap to evaluate several ordination and species distribution modeling techniques for quantifying niche overlap. We illustrate the approach with data on two well-studied invasive species.¦4. Results - We show that niche overlap can be accurately detected with the framework when variables driving the distributions are known. The method is robust to known and previously undocumented biases related to the dependence of species occurrences on the frequency of environmental conditions that occur across geographic space. The use of a kernel smoother makes the process of moving from geographical space to multivariate environmental space independent of both sampling effort and arbitrary choice of resolution in environmental space. However, the use of ordination and species distribution model techniques for selecting, combining and weighting variables on which niche overlap is calculated provide contrasting results.¦5. Main conclusions - The framework meets the increasing need for robust methods to quantify niche differences. It is appropriate to study niche differences between species, subspecies or intraspecific lineages that differ in their geographical distributions. Alternatively, it can be used to measure the degree to which the environmental niche of a species or intraspecific lineage has changed over time.
Resumo:
Aim Macroevolutionary patterns and processes change substantially depending on levels of taxonomic and ecological organization, and the resolution of environmental and spatial variability. In comparative methods, the resolution of environmental and spatial variability often defines the number of selective regimes used to test whether phenotypic characteristics are adaptively correlated with the environment. Here, we examine how investigator choice of the number of selective regimes, determined by varying the resolution of among-species variability in the species climatic niche (hereafter called ecological scale'), influences trait morphological diversification among Eriogonoideae species. We assess whether adaptive or neutral processes drive the evolution of several morphological traits in these species. Location South-western North America. Methods We applied a phylogenetic framework of three evolutionary models to four morphological traits and the climatic niches of Eriogonoideae (in the buckwheat family, Polygonaceae). We tested whether morphological traits evolve in relation to climate by adaptive or neutral process, and whether the resulting patterns of morphological variability are conserved or convergent across the clade. We inspected adaptive models of evolution under different levels of resolution of among-species variability of the climatic niche. Results We show that morphological traits and climate niches of Eriogonoideae species are not phylogenetically conserved. Further, adaptive evolution of phenotypic traits is specific to climatic niche occupancy across this clade. Finally, the likely evolutionary process and the level of detectable niche conservatism change depending on the resolution of environmental variability of the climatic niche. Main conclusions Our study demonstrates the need to consider both the resolution of environmental variability and alternative evolutionary models to understand the morphological diversification that accompanies divergent adaptive evolution of lineages to climatic conditions.
Resumo:
Aim Conservation strategies are in need of predictions that capture spatial community composition and structure. Currently, the methods used to generate these predictions generally focus on deterministic processes and omit important stochastic processes and other unexplained variation in model outputs. Here we test a novel approach of community models that accounts for this variation and determine how well it reproduces observed properties of alpine butterfly communities. Location The western Swiss Alps. Methods We propose a new approach to process probabilistic predictions derived from stacked species distribution models (S-SDMs) in order to predict and assess the uncertainty in the predictions of community properties. We test the utility of our novel approach against a traditional threshold-based approach. We used mountain butterfly communities spanning a large elevation gradient as a case study and evaluated the ability of our approach to model species richness and phylogenetic diversity of communities. Results S-SDMs reproduced the observed decrease in phylogenetic diversity and species richness with elevation, syndromes of environmental filtering. The prediction accuracy of community properties vary along environmental gradient: variability in predictions of species richness was higher at low elevation, while it was lower for phylogenetic diversity. Our approach allowed mapping the variability in species richness and phylogenetic diversity projections. Main conclusion Using our probabilistic approach to process species distribution models outputs to reconstruct communities furnishes an improved picture of the range of possible assemblage realisations under similar environmental conditions given stochastic processes and help inform manager of the uncertainty in the modelling results
Resumo:
Metastatic growth in distant organs is the major cause of cancer mortality. The development of metastasis is a multistage process with several rate-limiting steps. Although dissemination of tumour cells seems to be an early and frequent event, the successful initiation of metastatic growth, a process termed 'metastatic colonization', is inefficient for many cancer types and is accomplished only by a minority of cancer cells that reach distant sites. Prevalent target sites are characteristic of many tumour entities, suggesting that inadequate support by distant tissues contributes to the inefficiency of the metastatic process. Here we show that a small population of cancer stem cells is critical for metastatic colonization, that is, the initial expansion of cancer cells at the secondary site, and that stromal niche signals are crucial to this expansion process. We find that periostin (POSTN), a component of the extracellular matrix, is expressed by fibroblasts in the normal tissue and in the stroma of the primary tumour. Infiltrating tumour cells need to induce stromal POSTN expression in the secondary target organ (in this case lung) to initiate colonization. POSTN is required to allow cancer stem cell maintenance, and blocking its function prevents metastasis. POSTN recruits Wnt ligands and thereby increases Wnt signalling in cancer stem cells. We suggest that the education of stromal cells by infiltrating tumour cells is an important step in metastatic colonization and that preventing de novo niche formation may be a novel strategy for the treatment of metastatic disease.
Resumo:
Because data on rare species usually are sparse, it is important to have efficient ways to sample additional data. Traditional sampling approaches are of limited value for rare species because a very large proportion of randomly chosen sampling sites are unlikely to shelter the species. For these species, spatial predictions from niche-based distribution models can be used to stratify the sampling and increase sampling efficiency. New data sampled are then used to improve the initial model. Applying this approach repeatedly is an adaptive process that may allow increasing the number of new occurrences found. We illustrate the approach with a case study of a rare and endangered plant species in Switzerland and a simulation experiment. Our field survey confirmed that the method helps in the discovery of new populations of the target species in remote areas where the predicted habitat suitability is high. In our simulations the model-based approach provided a significant improvement (by a factor of 1.8 to 4 times, depending on the measure) over simple random sampling. In terms of cost this approach may save up to 70% of the time spent in the field.
Resumo:
Process development will be largely driven by the main equipment suppliers. The reason for this development is their ambition to supply complete plants or process systems instead of single pieces of equipment. The pulp and paper companies' interest lies in product development, as their main goal is to create winning brands and effective brand management. Design engineering companies will find their niche in detail engineering based on approved process solutions. Their development work will focus on increasing the efficiency of engineering work. Process design is a content-producing profession, which requires certain special characteristics: creativity, carefulness, the ability to work as a member of a design team according to time schedules and fluency in oral as well as written presentation. In the future, process engineers will increasingly need knowledge of chemistry as well as information and automation technology. Process engineering tools are developing rapidly. At the moment, these tools are good enough for static sizing and balancing, but dynamic simulation tools are not yet good enough for the complicated chemical reactions of pulp and paper chemistry. Dynamic simulation and virtual mill models are used as tools for training the operators. Computational fluid dynamics will certainlygain ground in process design.
Resumo:
TRIZ is one of the well-known tools, based on analytical methods for creative problem solving. This thesis suggests adapted version of contradiction matrix, a powerful tool of TRIZ and few principles based on concept of original TRIZ. It is believed that the proposed version would aid in problem solving, especially those encountered in chemical process industries with unit operations. In addition, this thesis would help fresh process engineers to recognize importance of various available methods for creative problem solving and learn TRIZ method of creative problem solving. This thesis work mainly provides idea on how to modify TRIZ based method according to ones requirements to fit in particular niche area and solve problems efficiently in creative way. Here in this case, the contradiction matrix developed is based on review of common problems encountered in chemical process industry, particularly in unit operations and resolutions are based on approaches used in past to handle those issues.
Resumo:
Companies require information in order to gain an improved understanding of their customers. Data concerning customers, their interests and behavior are collected through different loyalty programs. The amount of data stored in company data bases has increased exponentially over the years and become difficult to handle. This research area is the subject of much current interest, not only in academia but also in practice, as is shown by several magazines and blogs that are covering topics on how to get to know your customers, Big Data, information visualization, and data warehousing. In this Ph.D. thesis, the Self-Organizing Map and two extensions of it – the Weighted Self-Organizing Map (WSOM) and the Self-Organizing Time Map (SOTM) – are used as data mining methods for extracting information from large amounts of customer data. The thesis focuses on how data mining methods can be used to model and analyze customer data in order to gain an overview of the customer base, as well as, for analyzing niche-markets. The thesis uses real world customer data to create models for customer profiling. Evaluation of the built models is performed by CRM experts from the retailing industry. The experts considered the information gained with help of the models to be valuable and useful for decision making and for making strategic planning for the future.
Resumo:
The heavy metal contamination in the environment may lead to circumstances like bioaccumulation and inturn biomagnification. Hence cheaper and effective technologies are needed to protect the precious natural resources and biological lives. A suitable technique is the one which meets the technical and environmental criteria for dealing with a particular remediation problem and should be site-specific due to spatial and climatic variations and it may not economically feasible everywhere. The search for newer technologies for the environmental therapy, involving the removal of toxic metals from wastewaters has directed attention to adsorption, based on metal binding capacities of various adsorbent materials. Therefore, the present study aim to identify and evaluate the most current mathematical formulations describing sorption processes. Although vast amount of research has been carried out in the area of metal removal by adsorption process using activated carbon few specific research data are available in different scientific institutions. The present work highlights the seasonal and spatial variations in the distribution of some selected heavy metals among various geochemical phases of Cochin Estuarine system and also looked into an environmental theraptic/remedial approach by adsorption technique using activated charcoal and chitosan, to reduce and thereby controlling metallic pollution. The thesis has been addressed in seven chapters with further subdivisions. The first chapter is introductory, stating the necessity of reducing or preventing water pollution due to the hazardous impact on environment and health of living organisms and drawing it from a careful review of literature relevant to the present study. It provides a constricted description about the study area, geology, and general hydrology and also bears the major objectives and scope of the present study.
Resumo:
This paper describes the recent developments and improvements made to the variable radius niching technique called Dynamic Niche Clustering (DNC). DNC is fitness sharing based technique that employs a separate population of overlapping fuzzy niches with independent radii which operate in the decoded parameter space, and are maintained alongside the normal GA population. We describe a speedup process that can be applied to the initial generation which greatly reduces the complexity of the initial stages. A split operator is also introduced that is designed to counteract the excessive growth of niches, and it is shown that this improves the overall robustness of the technique. Finally, the effect of local elitism is documented and compared to the performance of the basic DNC technique on a selection of 2D test functions. The paper is concluded with a view to future work to be undertaken on the technique.
Resumo:
1. Species-based indices are frequently employed as surrogates for wider biodiversity health and measures of environmental condition. Species selection is crucial in determining an indicators metric value and hence the validity of the interpretation of ecosystem condition and function it provides, yet an objective process to identify appropriate indicator species is frequently lacking. 2. An effective indicator needs to (i) be representative, reflecting the status of wider biodiversity; (ii) be reactive, acting as early-warning systems for detrimental changes in environmental conditions; (iii) respond to change in a predictable way. We present an objective, niche-based approach for species' selection, founded on a coarse categorisation of species' niche space and key resource requirements, which ensures the resultant indicator has these key attributes. 3. We use UK farmland birds as a case study to demonstrate this approach, identifying an optimal indicator set containing 12 species. In contrast to the 19 species included in the farmland bird index (FBI), a key UK biodiversity indicator that contributes to one of the UK Government's headline indicators of sustainability, the niche space occupied by these species fully encompasses that occupied by the wider community of 62 species. 4. We demonstrate that the response of these 12 species to land-use change is a strong correlate to that of the wider farmland bird community. Furthermore, the temporal dynamics of the index based on their population trends closely matches the population dynamics of the wider community. However, in both analyses, the magnitude of the change in our indicator was significantly greater, allowing this indicator to act as an early-warning system. 5. Ecological indicators are embedded in environmental management, sustainable development and biodiversity conservation policy and practice where they act as metrics against which progress towards national, regional and global targets can be measured. Adopting this niche-based approach for objective selection of indicator species will facilitate the development of sensitive and representative indices for a range of taxonomic groups, habitats and spatial scales.