966 resultados para niche partitioning


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Terrestrial invertebrates constitute most of described animal biodiversity and soil is a major reservoir of this diversity. In the classical attempt to understand the processes supporting biodiversity, ecologists are currently seeking to unravel the differential roles of environmental filtering and competition for resources in niche partitioning processes: these processes are in principle distinct although they may act simultaneously, interact at multiple spatial and temporal scales, and are often confounded in studies of soil communities. We used a novel combination of methods based on stable isotopes and trait analysis to resolve these processes in diverse oribatid mite assemblages at spatial
scales at which competition for resources could in principle be a major driver. We also used a null model approach based on a general neutral model of beta diversity. A large and significant fraction of community variation was explainable in terms of linear and periodic spatial structures in the distribution of organic C, N and soil structure: species were clearly arranged along an environmental, spatially structured gradient. However, competition related trait differences did not map onto the distances separating species along the environmental gradient and neutral models provided a satisfying approximation of beta diversity patterns. The results represent the first robust evidence
that in very diverse soil arthropod assemblages resource-based niche partitioning plays a minor role while environmental filtering remains a fundamental driver of species distribution.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Savannas are characterized by sparsely distributed woody species within a continuous herbaceous cover, composed mainly by grasses and small eudicot herbs. This vegetation structure is variable across the landscape, with shifts from open grassland to savanna woodland determined by factors that control tree density. These shifts often appear coupled with environmental variations, such as topographic gradients. Here we investigated whether herbaceous and woody savanna species differ in their use of soil water along a topographic gradient of about 110 m, spanning several vegetation physiognomies generally associated with Neotropical savannas. We measured the delta H-2 and delta O-18 signatures of plants, soils, groundwater and rainfall, determining the depth of plant water uptake and examining variations in water uptake patterns along the gradient. We found that woody species use water from deeper soil layers compared to herbaceous species, regardless of their position in the topographic gradient. However, the presence of a shallow water table restricted plant water uptake to the superficial soil layers at lower portions of the gradient. We confirmed that woody and herbaceous species are plastic with respect to their water use strategy, which determines niche partitioning across topographic gradients. Abiotic factors such as groundwater level, affect water uptake patterns independently of plant growth form, reinforcing vegetation gradients by exerting divergent selective pressures across topographic gradients. (C) 2013 SAAB. Published by Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Gregarine apicomplexans are a diverse group of single-celled parasites that have feeding stages (trophozoites) and gamonts that generally inhabit the extracellular spaces of invertebrate hosts living in marine, freshwater, and terrestrial environments. Inferences about the evolutionary morphology of gregarine apicomplexans are being incrementally refined by molecular phylogenetic data, which suggest that several traits associated with the feeding cells of gregarines arose by convergent evolution. The study reported here supports these inferences by showing how molecular data reveals traits that are phylogenetically misleading within the context of comparative morphology alone. We examined the ultrastructure and molecular phylogenetic positions of two gregarine species isolated from the spaghetti worm Thelepus japonicus: Selenidium terebellae Ray 1930 and S. melongena n. sp. The ultrastructural traits of S. terebellae were very similar to other species of Selenidium sensu stricto, such as having vermiform trophozoites with an apical complex, few epicytic folds, and a dense array of microtubules underlying the trilayered pellicle. By contrast, S. melongena n. sp. lacked a comparably discrete assembly of subpellicular microtubules, instead employing a system of fibrils beneath the cell surface that supported a relatively dense array of helically arranged epicytic folds. Molecular phylogenetic analyses of small subunit rDNA sequences derived from single-cell PCR unexpectedly demonstrated that these two gregarines are close sister species. The ultrastructural differences between these two species were consistent with the fact that S. terebellae infects the inner lining of the host intestines, and S. melongena n. sp. primarily inhabits the coelom, infecting the outside wall of the host intestine. Altogether, these data demonstrate a compelling case of niche partitioning and associated morphological divergence in marine gregarine apicomplexans. (C) 2014 Elsevier GmbH. All rights reserved.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Introduction: Our purpose was to assess how pairs of sibling horseshoe bats coexists when their morphology and echolocation are almost identical. We collected data on echolocation, wing morphology, diet, and habitat use of sympatric Rhinolophus mehelyi and R. euryale. We compared our results with literature data collected in allopatry with similar protocols and at the same time of the year (breeding season). Results:Echolocation frequencies recorded in sympatry for R. mehelyi (mean = 106.8 kHz) and R. euryale (105.1 kHz) were similar to those reported in allopatry (R. mehelyi 105–111 kHz; R. euryale 101–109 kHz). Wing parameters were larger in R. mehelyi than R. euryale for both sympatric and allopatric conditions. Moths constitute the bulk of the diet of both species in sympatry and allopatry, with minor variation in the amounts of other prey. There were no inter-specific differences in the use of foraging habitats in allopatry in terms of structural complexity, however we found inter-specific differences between sympatric populations: R. mehelyi foraged in less complex habitats. The subtle inter-specific differences in echolocation frequency seems to be unlikely to facilitate dietary niche partitioning; overall divergences observed in diet may be explained as a consequence of differential prey availability among foraging habitats. Inter-specific differences in the use of foraging habitats in sympatry seems to be the main dimension for niche partitioning between R. mehelyi and R. euryale, probably due to letter differences in wing morphology. Conclusions: Coexistence between sympatric sibling horseshoe bats is likely allowed by a displacement in spatial niche dimension, presumably due to the wing morphology of each species, and shifts the niche domains that minimise competition. Effective measures for conservation of sibling/similar horseshoe bats should guarantee structural diversity of foraging habitats.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

As with many organisms across the globe, Cicindela nevadica lincolniana is threatened with extinction. Understanding ecological factors that contribute to extinction vulnerability and what methods aid in the recovery of those species is essential in developing successful conservation programs. Here we examine behavioral mechanisms for niche partitioning along with improving techniques for captive rearing protocol and increasing public awareness about the conservation of this local insect. Ovipositional selectivity was examined for Cicindela nevadica lincolniana, Cicindela circumpicta, Cicindela togata, Cicindela punctulata, and Cicindela fulgida. Models reflect that these species of co-occurring tiger beetles select different ranges of salinity in which to oviposit thereby reducing the potential for interspecific competition. In a second study, thermoregulatory niche partitioning was examined for the same complex of tiger beetle species. Time spent in the sun, on different substrates, and engaging in various behaviors associated with thermoregulation were significantly different during different parts of the day and between species. I continued along a previous line of study to develop a viable captive rearing program. So far fourteen adult Cicindela nevadica lincolniana have been successfully reared in captivity. Overwintering mortality has been determined as a key factor in the mortality of this species in captivity. Finally, I examined the potential for using the visual arts to promote the conservation of Cicindela nevadica lincolniana and associated saline wetlands. The results from surveys conducted at the exhibit suggest that art exhibits can have a strong positive impact on members of the community.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

From 2001 to 2006, 71 pop-up satellite archival tags (PSATs) were deployed on five species of pelagic shark (blue shark [Prionace glauca]; shortfin mako [Isurus oxyrinchus]; silky shark [Carcharhinus falciformis]; oceanic whitetip shark [C. longimanus]; and bigeye thresher [Alopias superciliosus]) in the central Pacific Ocean to determine species-specific movement patterns and survival rates after release from longline fishing gear. Only a single postrelease mortality could be unequivocally documented: a male blue shark which succumbed seven days after release. Meta-analysis of published reports and the current study (n=78 reporting PSATs) indicated that the summary effect of postrelease mortality for blue sharks was 15% (95% CI, 8.5–25.1%) and suggested that catch-and-release in longline fisheries can be a viable management tool to protect parental biomass in shark populations. Pelagic sharks displayed species-specific depth and temperature ranges, although with significant individual temporal and spatial variability in vertical movement patterns, which were also punctuated by stochastic events (e.g., El Niño-Southern Oscillation). Pelagic species can be separated into three broad groups based on daytime temperature preferences by using the unweighted pair-group method with arithmetic averaging clustering on a Kolmogorov-Smirnov Dmax distance matrix: 1) epipelagic species (silky and oceanic whitetip sharks), which spent >95% of their time at temperatures within 2°C of sea surface temperature; 2) mesopelagic-I species (blue sharks and shortfin makos, which spent 95% of their time at temperatures from 9.7° to 26.9°C and from 9.4° to 25.0°C, respectively; and 3) mesopelagic-II species (bigeye threshers), which spent 95% of their time at temperatures from 6.7° to 21.2°C. Distinct thermal niche partitioning based on body size and latitude was also evident within epipelagic species.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

物种共存机制一直是群落生态学研究的核心内容。解释物种共存的假说很多,近年来最引人注目的是生态位分化假说和群落中性理论。这两种理论对群落内物种共存的相对重要性是目前群落生态学研究的热点。国际上这方面的研究基本集中在热带森林大样地内,而针对亚热带森林大样地的相关研究却非常少见。本文以浙江古田山24公顷常绿阔叶林永久固定监测样地第一次调查数据为基础,研究样地内木本植物与生境关联和与地形因子梯度相关,目的在于探讨物种生境生态位分化在亚热带常绿阔叶林内物种多样性维持中的作用,也为了解决当前物种生境关联相关研究中的一些不足之处。 本研究首先采用Torus转换检验分析古田山样地内90种常见木本植物与5类生境关联,结果表明有75种(83.3%)至少与一类生境类型显著相关,说明大部分亚热带森林群落内物种具有生境特化的特性。与CTFS全球大样地类似研究结果相比,古田山样地内生境特化的物种比例更高,这与古田山样地复杂的地形条件密切相关。通过本研究,证明地形条件越复杂,物种特化比例越高的趋势确实存在。在古田山样地,虽然83.3%的物种有生境特化的特性,但生境特化没有排他性,即并不完全排斥其他生境,在非最适生境也能稳定与其他物种共存。根据本研究与生境负相关的平均物种数与被检测的物种比例估算,古田山样地内生境异质性对物种多样性维持的贡献率约为19.6%,说明物种生境特化对于物种共存有一定的作用,但贡献并不大,除了生境异质性,仍有其他因素决定物种共存。 目前有关物种生境关联的研究都假设同一物种的个体对于生境偏好一致,不管胸径大小是否相同,很少有人研究不同生长阶段生境偏好的变化。本研究利用Torus转换检验比较样地内60种常见木本植物在3个生活史阶段(幼苗阶段、小树阶段和成熟阶段)与5类生境关联的变化,结果表明大部分物种在其幼苗和小树阶段的生境偏好比较一致,但成熟阶段与前两个阶段差别比较大,说明物种在生活史不同阶段的生境偏好可能发生改变。 由于生境划分没有统一的标准,不同学者用不同的方法划分生境类型和数量,主观性很大,造成不同研究地点、不同研究者之间的研究结果可比性差。本研究尝试利用直接梯度分析方法重新分析物种空间分布与地形梯度相关,用以代替生境关联分析。利用CCA分析检验样地内90种常见木本植物与4种地形因子梯度(海拔、凹凸度、坡度和坡向)的相关情况,发现有76个(84%)物种的空间分布与地形梯度相关,说明大部分物种具有沿地形因子梯度分布的特性。4种地形因子梯度变化对90个物种空间分布的解释量约为20%,说明地形异质性对于物种共存有一定作用,但贡献并不大。对生境关联分析和直接梯度法分析结果进行比较,两种方法分析结果一致,得到的结论也一致。直接梯度分析方法可以避免生境划分对研究结果的影响,是今后类似研究中值得采纳的方法。 本研究的结果表明地形异质性引起的生态位分化在古田山样地群落内物种多样性维持中起一定的作用,但贡献不大,因此需要更深入地研究其他环境因素引起的生态位分化在物种多样性维持中的作用,同时也需要进一步研究中性过程在物种多样性维持中的作用,以更全面地探讨生态位分化假说和中性理论在亚热带常绿阔叶林内物种共存的相对重要性。

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In reciprocal mutualism systems, the exploitation events by exploiters might disrupt the reciprocal mutualism, wherein one exploiter species might even exclude other coexisting exploiter species over an evolutionary time frame. What remains unclear is how such a community is maintained. Niche partitioning, or spatial heterogeneity among the mutualists and exploiters, is generally believed to enable stability within a mutualistic system. However, our examination of a reciprocal mutualism between a fig species (Ficus racemosa) and its pollinator wasp (Ceratosolen fusciceps) shows that spatial niche partitioning does not sufficiently prevent exploiters from overexploiting the common resource (i.e., the female flowers), because of the considerable niche overlap between the mutualists and exploiters. In response to an exploiter, our experiment shows that the fig can (1) abort syconia-containing flowers that have been galled by the exploiter, Apocryptophagus testacea, which oviposits before the pollinators do; and (2) retain syconia-containing flowers galled by Apocryptophagus mayri, which oviposit later than pollinators. However, as a result of (2), there is decreased development of adult non-pollinators or pollinator species in syconia that have not been sufficiently pollinated, but not aborted. Such discriminative abortion of figs or reduction in offspring development of exploiters while rewarding cooperative individuals with higher offspring development by the fig will increase the fitness of cooperative pollinating wasps, but decrease the fitness of exploiters. The fig fig wasp interactions are diffusively coevolved, a case in which fig wasps diversify their genotype, phenotype, or behavior as a result of competition between wasps, while figs diverge their strategies to facilitate the evolution of cooperative fig waps or lessen the detrimental behavior by associated fig wasps. In habitats or syconia that suffer overexploitation, discriminative abortion of figs or reduction in the offspring development of exploiters in syconia that are not or not sufficiently pollinated will decrease exploiter fitness and perhaps even drive the population of exploiters to local extinction, enabling the evolution and maintenance of cooperative pollinators through the movement between habitats or syconia (i.e., the metapopulations).

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Sequences of the mitochondrial cytochrome b (1140 bp) and nuclear IRBP (1152 bp) genes were used to assess the evolutionary history of Apodemus, using the complete set of Asian species. Our results indicate that speciation in Asia involved three radiations, which supports an earlier study. The initial radiation yielded A. argenteus (Japanese endemic), A. gurkha (Nepalese endemic), and the ancestral lineage of the remaining Asian species. This lineage subsequently diverged into four groups: agrarius-chevrieri (agrarius group), draco-latronum-semotus (draco group), A. peninsulae, and A. speciosus (Japanese endemic). The final step consisted of divergence within two species groups as a consequence of the geography of the Yunnan-Guizhou plateau and Taiwan. The ecological ability of two Apodemus-species to inhabit one locality via niche partitioning likely drove the second radiation and shaped the basic geographical pattern seen today: A. argenteus and A. speciosus in Japan, A. agrarius and A. peninsulae in northern China, and the A. agrarius and A. draco groups in southern China. The three radiations are estimated to have occurred 7.5, 6.6, and 1.8-0.8 Mya respectively, using the IRBP clock, based on rat-mouse divergence 12 Mya. (C) 2003 The Linnean Society of London.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Background: Oceans are high gene flow environments that are traditionally believed to hamper the build-up of genetic divergence. Despite this, divergence appears to occur occasionally at surprisingly small scales. The Galápagos archipelago provides an ideal opportunity to examine the evolutionary processes of local divergence in an isolated marine environment. Galápagos sea lions (Zalophus wollebaeki) are top predators in this unique setting and have an essentially unlimited dispersal capacity across the entire species range. In theory, this should oppose any genetic differentiation.
Results: We find significant ecological, morphological and genetic divergence between the western colonies and colonies from the central region of the archipelago that are exposed to different ecological conditions. Stable isotope analyses indicate that western animals use different food sources than those from the central area. This is likely due to niche partitioning with the second Galápagos eared seal species, the Galápagos fur seal (Arctocephalus galapagoensis) that exclusively dwells in the west. Stable isotope patterns correlate with significant differences in foraging-related skull morphology. Analyses of mitochondrial sequences as well as microsatellites reveal signs of initial genetic differentiation.
Conclusion: Our results suggest a key role of intra- as well as inter-specific niche segregation in the evolution of genetic structure among populations of a highly mobile species under conditions of free movement. Given the monophyletic arrival of the sea lions on the archipelago, our study challenges the view that geographical barriers are strictly needed for the build-up of genetic divergence. The study further raises the interesting prospect that in social, colonially breeding mammals additional forces, such as social structure or feeding traditions, might bear on the genetic partitioning of populations.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Zooplankton community structure (composition, diversity, dynamics and trophic relationships) of Mediterranian marshes, has been analysed by means of a size based approach. In temporary basins the shape of the biomass-size spectra is related to the hydrological cycle. Linear shape spectra are more frequent in flooding situations when nutrient input causes population growth of small-sized organisms, more than compensating for the effect of competitive interactions. During confinement conditions the scarcity of food would decrease zooplankton growth and increase intra- and interspecific interactions between zooplankton organisms which favour the greatest sizes thus leading to the appearance of curved shape spectra. Temporary and permanent basins have similar taxonomic composition but the latter have higher species diversity, a more simplified temporal pattern and a size distribution dominated mainly by smaller sizes. In permanents basins zooplankton growth is not only conditioned by the availability of resources but by the variable predation of planktivorous fish, so that the temporal variability of the spectra may also be a result of temporal differences in fish predation. Size diversity seems to be a better indicator of the degree of this community structure than species diversity. The tendency of size diversity to increase during succession makes it useful to discriminate between different succession stages, fact that is not achieved by analysing only species diversity since it is low both under large and frequent or small and rare disturbances. Amino acid composition differences found among stages of copepod species indicate a gradual change in diet during the life cycle of these copepods, which provide evidence of food niche partitioning during ontogeny, whereas Daphnia species show a relatively constant amino acid composition. There is a relationship between the degree of trophic niche overlap among stages of the different species and nutrient concentration. Copepods, which have low trophic niche overlap among stages are dominant in food-limited environments, probably because trophic niche partitioning during development allow them to reduce intraspecific competition between adults, juveniles and nauplii. Daphnia species are only dominant in water bodies or periods with high productivity, probably due to the high trophic niche overlap between juveniles and adults. These findings suggest that, in addition to the effect of interspecific competition, predation and abiotic factors, the intraspecific competition might play also an important role in structuring zooplankton assemblages.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Background American mink forage on land and in water, with aquatic prey often constituting a large proportion of their diet. Their long, thin body shape and relatively poor insulation make them vulnerable to heat loss, particularly in water, yet some individuals dive over 100 times a day. At the level of individual dives, previous research found no difference in dive depth or duration, or the total number of dives per day between seasons, but mink did appear to make more dives per active hour in winter than in summer. There was also no difference in the depth or duration of individual dives between the sexes, but there was some evidence that females made more dives per day than males. However, because individual mink dives tend to be extremely short in duration, persistence (quantified as the number of consecutive dives performed) may be a more appropriate metric with which to compare diving behaviour under different scenarios. Results Mink performed up to 28 consecutive dives, and dived continually for up to 36 min. Periods of more loosely aggregated diving (termed ‘aquatic activity sessions’) comprised up to 80 dives, carried out over up to 162.8 min. Contrary to our predictions, persistence was inversely proportional to body weight, with small animals more persistent than large ones, and (for females, but not for males) increased with decreasing temperature. For both sexes, persistence was greater during the day than during the night. Conclusions The observed body weight effect may point to inter-sexual niche partitioning, since in mink the smallest animals are females and the largest are males. The results may equally point to individual specialism’s, since persistence was also highly variable among individuals. Given the energetic costs involved, the extreme persistence of some animals observed in winter suggests that the costs of occasional prolonged activity in cold water are outweighed by the energetic gains. Analysing dive persistence can provide information on an animal’s physical capabilities for performing multiple dives and may reveal how such behaviour is affected by different conditions. Further development of monitoring and biologging methodology to allow quantification of hunting success, and thus the rewards obtained under alternative scenarios, would be insightful.