985 resultados para new mineral


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The new mineral francoisite-(Ce), (Ce,Nd,Ca)[(UO(2))(3)O(OH)(PO(4))(2)]center dot 6H(2)O is the Ce-analog of francoisite-(Nd). It has been discovered simultaneously at the La Creusaz uranium deposit near Les Marecottes in Valais, Switzerland, and at the Number 2 uranium Workings, Radium Ridge near Mt. Painter, Arkaroola area, Northern Flinders Ranges in South Australia. Francoisite-(Ce) is a uranyl-bearing supergene mineral that results from the alteration under oxidative conditions of REE- and U(4+)-bearing hypogene minerals: allanite-(Ce), monazite-(Ce), +/- uraninite at Les Marecottes; monazite-(Ce), ishikawaite-samarskite, and an unknown primary U-mineral at Radium Ridge. The REE composition of francoisite-(Ce) results from a short aqueous transport of REE leached out of primary minerals [most likely monazite-(Ce) at Radium Ridge and allanite-(Ce) at La Creusaz], with fractionation among REE resulting mainly from aqueous transport, with only limited Ce loss due to oxidation to Ce(4+) during transport.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cleusonite, (Pb,Sr)(U4+,U6+) (Fe2+,Zn)(2) (Ti,Fe2+,Fe3+)(18) (O,OH)(38), is a new member of the crichtonite group. It was found at two occurrences in greenschist facies metamorphosed gneissic series of the Mont Fort and Siviez-Mischabel Nappes in Valais, Switzerland (Cleuson and Bella Tolla summit), and named after the type locality. It occurs as black opaque cm-sized tabular crystals with a bright sub-metallic lustre. The crystals consist of multiple rhombohedra and hexagonal prisms that are generally twinned. Measured density is 4.74(4) g/cm(3) and can be corrected to 4.93(12) g/cm(3) for macroscopic swelling due to radiation damage; the calculated density varies from 5.02(6) (untreated) to 5.27(5) (heat-treated crystals); the difference is related to the cell swelling due to the metamictisation. The empirical formula for cleusonite from Cleuson is (Pb0.89Sr0.12)(Sigma=1.01) (U0.79+4U0.30+6)(Sigma=1.09) (Fe1.91+2Zn0.09)(Sigma=2.00) (Ti11.80Fe3.44+2Fe2.33+3V0.19+5Mn0.08Al0.07)(Sigma=17.90) [O-35.37(OH)(2.63)](Sigma=38). Cations were measured by electron microprobe, the presence of structural (OH) was confirmed by infrared spectroscopy and the U6+/U4+ and Fe2+/Fe3+ ratios were determined by X-ray photoelectron spectroscopy. Cleusonite is partly metamict, and untreated crystals only show three major X-ray diffraction peaks. Because of this radiation-damaged state, the mineral appears optically isotropic and shows a light-grey to white colour in reflected polarized light. Cleusonite is trigonal, space group R $(3) over bar $, and unit-cell parameters are varying from a = 10.576(3), c = 21.325(5) angstrom (untreated crystal) to a = 10.4188(6), c = 20.942(1) angstrom (800 degrees C treatment) and to a = 10.385(2), c = 20.900(7) angstrom (1000 degrees C treatment). The three cells give a common axial ratio 2.01 (1), which is identical to the measured morphological one 2.04(6). ne name cleusonite also applies to the previously described ``uranium-rich senaite'' from Alinci (Macedonia) and the ``plumbodavidite'' from Huanglongpu (China).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Electron-microprobe analysis, single-crystal X-ray diffraction with an area detector, and high-resolution transmission electron microscopy show that minerals related to wagnerite, triplite and triploidite, which are monoclinic Mg, Fe and Mn phosphates with the formula Me2+ 2PO4(F,OH), constitute a modulated series based on the average triplite structure. Modulation occurs along b and may be commensurate with (2b periodicity) or incommensurate but generally close to integer values (∼3b, ∼5b, ∼7b, ∼9b), i.e. close to polytypic behaviour. As a result, the Mg- and F-dominant minerals magniotriplite and wagnerite can no longer be considered polymorphs of Mg2PO4F, i.e., there is no basis for recognizing them as distinct species. Given that wagnerite has priority (1821 vs. 1951), the name magniotriplite should be discarded in favour of wagnerite. Hydroxylwagnerite, end-member Mg2PO4OH, occurs in pyrope megablasts along with talc, clinochlore, kyanite, rutile and secondary apatite in two samples from lenses of pyrope–kyanite–phengite–quartz-schist within metagranite in the coesite-bearing ultrahigh-pressure metamorphic unit of the Dora-Maira Massif, western Alps, Vallone di Gilba, Val Varaita, Piemonte, Italy. Electron microprobe analyses of holotype hydroxylwagnerite and of the crystal with the lowest F content gave in wt%: P2O5 44.14, 43.99; SiO2 0.28, 0.02; SO3 –, 0.01; TiO2 0.20, 0.16; Al2O3 0.06, 0.03; MgO 48.82, 49.12; FeO 0.33, 0.48; MnO 0.01, 0.02; CaO 0.12, 0.10; Na2O 0.01, –; F 5.58, 4.67; H2O (calc) 2.94, 3.36; –O = F 2.35, 1.97; Sum 100.14, 99.98, corresponding to (Mg1.954Fe0.007Ca0.003Ti0.004Al0.002Na0.001)Σ=1.971(P1.003Si0.008)Σ=1.011O4(OH0.526F0.474)Σ=1 and (Mg1.971Fe0.011Ca0.003Ti0.003Al0.001)Σ=1.989(P1.002Si0.001)Σ=1.003O4(OH0.603F0.397)Σ=1, respectively. Due to the paucity of material, H2O could not be measured, so OH was calculated from the deficit in F assuming stoichiometry, i.e., by assuming F + OH = 1 per formula unit. Holotype hydroxylwagnerite is optically biaxial (+), α 1.584(1), β 1.586(1), γ 1.587(1) (589 nm); 2V Z(meas.) = 43(2)°; orientation Y = b. Single-crystal X-ray diffraction gives monoclinic symmetry, space group P21/c, a = 9.646(3) Å, b = 12.7314(16) Å, c = 11.980(4) Å, β = 108.38(4) , V = 1396.2(8) Å3, Z = 16, i.e., hydroxylwagnerite is the OH-dominant analogue of wagnerite [β-Mg2PO4(OH)] and a high-pressure polymorph of althausite, holtedahlite, and α- and ε-Mg2PO4(OH). We suggest that the group of minerals related to wagnerite, triplite and triploidite constitutes a triplite–triploidite super-group that can be divided into F-dominant phosphates (triplite group), OH-dominant phosphates (triploidite group), O-dominant phosphates (staněkite group) and an OH-dominant arsenate (sarkinite). The distinction among the three groups and a potential fourth group is based only on chemical features, i.e., occupancy of anion or cation sites. The structures of these minerals are all based on the average triplite structure, with a modulation controlled by the ratio of Mg, Fe2+, Fe3+ and Mn2+ ionic radii to (O,OH,F) ionic radii.