1000 resultados para neutron irradiation


Relevância:

100.00% 100.00%

Publicador:

Resumo:

AlGaN/GaN heterostructures have been irradiated by neutrons with different influences and characterized by means of temperature-dependent Hall measurements and Micro-Raman scattering techniques. It is found that the carrier mobility of two-dimensional electron gas (2DEG) is very sensitive to neutrons. At a low influence of 6.13 x 10(15) cm(-2), the carrier mobility drops sharply, while the sheet carrier density remains the same as that of an unirradiated sample. Moreover, even for a fluence of up to 3.66 x 10(16) cm(-2), the sheet carrier density shows only a slight drop. We attribute the degradation of the figure-of-merit (product of n(s) x mu) of 2DEG to the defects induced by neutron irradiation. Raman measurements show that neutron irradiation does not yield obvious change to the strain state of AlGaN/GaN heterostructures, which proves that degradation of sheet carrier density has no relation to strain relaxation in the present study. The increase of the product of n(s) x mu of 2DEG during rapid thermal annealing processes at relatively high temperature has been attributed to the activation of Ge-Ga transmuted from Ga and the recovery of displaced defects.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Test strip detectors of 125 mu m, 500 mu m, and 1 mm pitches with about 1 cm(2) areas have been made on medium-resistivity silicon wafers (1.3 and 2.7 k Ohm cm). Detectors of 500 mu m pitch have been tested for charge collection and position precision before and after neutron irradiation (up to 2 x 10(14) n/cm(2)) using 820 and 1030 nm laser lights with different beam-spot sizes. It has been found that for a bias of 250 V a strip detector made of 1.3 k Ohm cm (300 mu m thick) can be fully depleted before and after an irradiation of 2 x 10(14) n/cm(2). For a 500 mu m pitch strip detector made of 2.7 k Ohm cm tested with an 1030 nm laser light with 200 mu m spot size, the position reconstruction error is about 14 mu m before irradiation, and 17 mu m after about 1.7 x 10(13) n/cm(2) irradiation. We demonstrated in this work that medium resistivity silicon strip detectors can work just as well as the traditional high-resistivity ones, but with higher radiation tolerance. We also tested charge sharing and position reconstruction using a 1030 nm wavelength (300 mu m absorption length in Si at RT) laser, which provides a simulation of MIP particles in high-physics experiments in terms of charge collection and position reconstruction, (C) 1999 Elsevier Science B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A novel method, based on an infrared absorption and neutron irradiation technique, has been developed for the determination of interstitial oxygen in heavily boron-doped silicon. The new procedure utilizes fast neutron irradiated silicon wafer specimens. On fast neutron irradiation, the free carriers of high concentration in silicon can be trapped by the irradiated defects and the resistivity increased. The resulting calibration curve for the measurement of interstitial oxygen in boron-doped silicon has been established on the basis of the annealing behaviour of irradiated boron-doped CZ silicon.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Test strip detectors of 125 mu m, 500 mu m, and 1 mm pitches with about 1 cm(2) areas have been made on medium-resistivity silicon wafers (1.3 and 2.7 k Ohm cm). Detectors of 500 mu m pitch have been tested for charge collection and position precision before and after neutron irradiation (up to 2 x 10(14) n/cm(2)) using 820 and 1030 nm laser lights with different beam-spot sizes. It has been found that for a bias of 250 V a strip detector made of 1.3 k Ohm cm (300 mu m thick) can be fully depleted before and after an irradiation of 2 x 10(14) n/cm(2). For a 500 mu m pitch strip detector made of 2.7 k Ohm cm tested with an 1030 nm laser light with 200 mu m spot size, the position reconstruction error is about 14 mu m before irradiation, and 17 mu m after about 1.7 x 10(13) n/cm(2) irradiation. We demonstrated in this work that medium resistivity silicon strip detectors can work just as well as the traditional high-resistivity ones, but with higher radiation tolerance. We also tested charge sharing and position reconstruction using a 1030 nm wavelength (300 mu m absorption length in Si at RT) laser, which provides a simulation of MIP particles in high-physics experiments in terms of charge collection and position reconstruction, (C) 1999 Elsevier Science B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have developed a methodology for measuring the decay constant of the spontaneous fission of U-238, lambda(f), using nuclear particle track detectors where thermal neutron irradiation is unnecessary. This methodology is based on the fact that the radiation damage caused by spontaneous fission of trans-uranium elements bearing a mass number close to 238 are similar to U-238 spontaneous-fission ones. Loading a thick source of uranium (thickness greater than the fission fragment range) with a small amount of a suitable trans-uranium element (for instance, Pu-242, which presents a spontaneous fission half-life of 6.75(.)10(10) y), it is possible to determine the observation efficiency of a particle-track detector for fission fragments. Procedures concerning our thick source manufacture and uniformity tests of the trans-uranium distribution are also presented. These results make it possible for the exposure of thick uranium sources (without trans-uranium element) to lead to a lambda(f) value.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

To carry out the dating by the Fission Track Method (FTM) the international community that works with this method employs methodologies in which the mineral to be dated must be irradiated with neutrons. Such irradiation, performed in a nuclear reactor, demand a relatively long waiting time so that the activity of the sample attain a proper level for handling. The present work aims to establish a methodology that makes possible the dating by FTM using a mass spectrometer instead of a nuclear reactor. This methodology was applied to apatite samples from Durango, Mexico. © 2009 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

During the last decade advances in the field of sensor design and improved base materials have pushed the radiation hardness of the current silicon detector technology to impressive performance. It should allow operation of the tracking systems of the Large Hadron Collider (LHC) experiments at nominal luminosity (1034 cm-2s-1) for about 10 years. The current silicon detectors are unable to cope with such an environment. Silicon carbide (SiC), which has recently been recognized as potentially radiation hard, is now studied. In this work it was analyzed the effect of high energy neutron irradiation on 4H-SiC particle detectors. Schottky and junction particle detectors were irradiated with 1 MeV neutrons up to fluence of 1016 cm-2. It is well known that the degradation of the detectors with irradiation, independently of the structure used for their realization, is caused by lattice defects, like creation of point-like defect, dopant deactivation and dead layer formation and that a crucial aspect for the understanding of the defect kinetics at a microscopic level is the correct identification of the crystal defects in terms of their electrical activity. In order to clarify the defect kinetic it were carried out a thermal transient spectroscopy (DLTS and PICTS) analysis of different samples irradiated at increasing fluences. The defect evolution was correlated with the transport properties of the irradiated detector, always comparing with the un-irradiated one. The charge collection efficiency degradation of Schottky detectors induced by neutron irradiation was related to the increasing concentration of defects as function of the neutron fluence.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Clinical oncologists and cancer researchers benefit from information on the vascularization or non-vascularization of solid tumors because of blood flow's influence on three popular treatment types: hyperthermia therapy, radiotherapy, and chemotherapy. The objective of this research is the development of a clinically useful tumor blood flow measurement technique. The designed technique is sensitive, has good spatial resolution, in non-invasive and presents no risk to the patient beyond his usual treatment (measurements will be subsequent only to normal patient treatment).^ Tumor blood flow was determined by measuring the washout of positron emitting isotopes created through neutron therapy treatment. In order to do this, several technical and scientific questions were addressed first. These questions were: (1) What isotopes are created in tumor tissue when it is irradiated in a neutron therapy beam and how much of each isotope is expected? (2) What are the chemical states of the isotopes that are potentially useful for blood flow measurements and will those chemical states allow these or other isotopes to be washed out of the tumor? (3) How should isotope washout by blood flow be modeled in order to most effectively use the data? These questions have been answered through both theoretical calculation and measurement.^ The first question was answered through the measurement of macroscopic cross sections for the predominant nuclear reactions in the body. These results correlate well with an independent mathematical prediction of tissue activation and measurements of mouse spleen neutron activation. The second question was addressed by performing cell suspension and protein precipitation techniques on neutron activated mouse spleens. The third and final question was answered by using first physical principles to develop a model mimicking the blood flow system and measurement technique.^ In a final set of experiments, the above were applied to flow models and animals. The ultimate aim of this project is to apply its methodology to neutron therapy patients. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An automated panoramic irradiator with a 3 Ci 241Am-Be neutron source is installed in a bunker-type large room at the Universidad Politécnica de Madrid (UPM). It was recently modified and a neutron spectrometry campaign was organized to characterize the neutron fields in different measurement points along the irradiation bench. Four research groups working with different Bonner Sphere Spectrometers (BSS) and using different spectral unfolding codes took part to this exercise. INFN-LNF used a BSS formed by 9 spheres plus bare detector, with cylindrical, almost point like, 6LiI(Eu) scintillator (4 mm x 4 mm, from Ludlum); UAZ-UPM employed a similar system but with only 6 spheres plus bare detector; UAB worked with a 3He filled proportional counter at 8kPa filling pressure, cylindrical 9 mm x 10 mm (05NH1 from Eurisys) with 11 spheres configuration; and CIEMAT used 12 spheres with an spherical 3He SP9 counter (Centronic Ltd., UK) with very high sensitivity due to the large diameter (3.2 cm) and the filling pressure of the order of 228 kPa. Each group applied a different spectral unfolding method: INFN and UAB worked with FRUIT ver. 3.0 with their own response matrixes; UAZ-UPM used the BUNKIUT unfolding code with the response matrix UTA4 and CIEMAT employed the GRAVEL-MAXED-IQU package with their own response matrix. The paper shows the main results obtained in terms of neutron spectra at fixed distances from the source as well as total neutron fluence rate and ambient dose equivalent rate H*(10) determined from the spectra. The latter are compared with the readings of a common active survey-meter (LB 6411). The small differences in the results of the various groups are discussed.