30 resultados para neurotrauma
Resumo:
The management of neurotrauma in Australia has been one of the significant public health triumphs during the last 30 years of the 20th century. State and national government agencies act in a coordinated fashion to collect data and to promote research on how to manage neurotrauma patients. Between 1970 and 1995, fatalities from road accidents decreased by 47%. Hospital admissions have decreased by 40% despite a 40% increase in the population and a 120% increase in registered vehicles. Fatalities per 10,000 registered vehicles were 8.05% in 1970 and they fell to 1.84% per vehicles in 1995, while fatalities per 10;000 population were 3 in 1970 falling to 1.11 in 1995. Hospitalization from road crashes decreased 23% between March 1988 and March 1997. Public education has steadily improved, backed by the state public health sources. A uniform code of road safety laws has been adopted, backed by legislation and legal penalties and increasing police enforcement. Clinical care of patients has improved as a result of faster communications, tele-medicine, trauma systems, the CT scanner; intensive care units, and improved monitoring. Patient rehabilitation and counseling are now carried out at units accredited by the Australian Council on Health Care Standards.
Resumo:
La necesidad que presenta la población hacia servicios especializados de salud que brinden una atención oportuna, eficaz y de alta calidad, con el fin de disminuir problemáticas que van desde la limitación en la actividad hasta discapacidad del paciente, conllevó a la creación del proyecto Ciudad Salud, el cual busca la instauración de clúster de salud de alta complejidad en la ciudad de Bogotá, para establecerse como la mejor oferta en salud a nivel nacional e internacional. Dentro del proyecto se encuentra el Hospital Universitario de la Samaritana, el cual participa con la especialidad de Neurotrauma de Columna, basado en esta especialidad se realiza la presente investigación, con el fin de Proponer que este Centro de Excelencia opere bajo un modelo de negocios acorde con la filosofía institucional, para dar al hospital un valor agregado y diferenciador que le permita ser competitivo en la prestación de servicios de salud. Para el desarrollo de la investigación se crean tres sesiones de grupos focales con la participación en total de 19 personas que trabajan en la Institución, los cuales generan consenso en la instauración de los 9 ítems según el modelo Canvas; por otro lado, se logra el planteamiento de los componentes estructurales y funcionales necesarios para el desempeño del mismo. Así mismo se realizó una planeación estratégica basada en el análisis DOFA, proponiendo un plan estratégico basado en el ciclo PHVA.
Resumo:
This prospective study evaluated serum procalcitonin (PCT) and C-reactive protein (CRP) as markers for systemic inflammatory response syndrome (SIRS)/sepsis and mortality in patients with traumatic brain injury and subarachnoid haemorrhage. Sixty-two patients were followed for 7 days. Serum PCT and CRP were measured on days 0, 1, 4, 5, 6 and 7. Seventy-seven per cent of patients with traumatic brain injury and 83% with subarachnoid haemorrhage developed SIRS or sepsis (P= 0.75). Baseline PCT and CRP were elevated in 35% and 55% ofpatients respectively (P=0.03). There was a statistically non-significant step-wise increase in serum PCT levels from no SIRS (0.4 +/- 0.6 ng/ml) to SIRS (3.05 +/- 9.3 ng/ml) to sepsis (5.5 +/- 12.5 ng/ml). A similar trend was noted in baseline PCT in patients with mild (0.06 +/- 0.9 ng/ml), moderate (0.8 +/- 0.7 ng/ml) and severe head injury (1.2 +/- 1.9 ng/ml). Such a gradation was not observed with serum CRP There was a non-significant trend towards baseline PCT being a better marker of hospital mortality compared with baseline CRP (ROC-AUC 0.56 vs 0.31 respectively). This is the first prospective study to document the high incidence of SIRS in neurosurgical patients. In our study, serum PCT appeared to correlate with severity of traumatic brain injury and mortality. However, it could not reliably distinguish between SIRS and sepsis in this cohort. This is in pan because baseline PCT elevation seemed to correlate with severity of injury. Only a small proportion ofpatients developed sepsis, thus necessitating a larger sample size to demonstrate the diagnostic usefulness of serum PCT as a marker of sepsis. Further clinical trials with larger sample sizes are required to confirm any potential role of PCT as a sepsis and outcome indicator in patients with head injuries or subarachnoid haemorrhage.
Resumo:
Traumatic brain injury (TBI) produces several cellular changes, such as gliosis, axonal and dendritic plasticity, and inhibition-excitation imbalance, as well as cell death, which can initiate epileptogenesis. It has been demonstrated that dysfunction of the inhibitory components of the cerebral cortex after injury may cause status epilepticus in experimental models; we proposed to analyze the response of cortical interneurons and astrocytes after TBI in humans. Twelve contusion samples were evaluated, identifying the expression of glial fibrillary acidic protein (GFAP) and calcium-binding proteins (CaBPs). The study was made in sectors with and without preserved cytoarchitecture evaluated with NeuN immunoreactivity (IR). In sectors with total loss of NeuN-IR the results showed a remarkable loss of CaBP-IR both in neuropil and somata. In sectors with conserved cytoarchitecture less drastic changes in CaBP-IR were detected. These changes include a decrease in the amount of parvalbumin (PV-IR) neurons in layer II, an increase of calbindin (CB-IR) neurons in layers III and V, and an increase in calretinin (CR-IR) neurons in layer II. We also observed glial fibrillary acidic protein immunoreactivity (GFAP-IR) in the white matter, in the gray-white matter transition, and around the sectors with NeuN-IR total loss. These findings may reflect dynamic activity as a consequence of the lesion that is associated with changes in the excitatory circuits of neighboring hyperactivated glutamatergic neurons, possibly due to the primary impact, or secondary events such as hypoxia-ischemia. Temporal evolution of these changes may be the substrate linking severe cortical contusion and the resulting epileptogenic activity observed in some patients.
Resumo:
Strategies aimed at improving spinal cord regeneration after trauma are still challenging neurologists and neuroscientists throughout the world. Many cell-based therapies have been tested, with limited success in terms of functional outcome. In this study, we investigated the effects of human dental pulp cells (HDPCs) in a mouse model of compressive spinal cord injury (SCI). These cells present some advantages, such as the ease of the extraction process, and expression of trophic factors and embryonic markers from both ecto-mesenchymal and mesenchymal components. Young adult female C57/BL6 mice were subjected to laminectomy at T9 and compression of the spinal cord with a vascular clip for 1 min. The cells were transplanted 7 days or 28 days after the lesion, in order to compare the recovery when treatment is applied in a subacute or chronic phase. We performed quantitative analyses of white-matter preservation, trophic-factor expression and quantification, and ultrastructural and functional analysis. Our results for the HDPC-transplanted animals showed better white-matter preservation than the DMEM groups, higher levels of trophic-factor expression in the tissue, better tissue organization, and the presence of many axons being myelinated by either Schwann cells or oligodendrocytes, in addition to the presence of some healthy-appearing intact neurons with synapse contacts on their cell bodies. We also demonstrated that HDPCs were able to express some glial markers such as GFAP and S-100. The functional analysis also showed locomotor improvement in these animals. Based on these findings, we propose that HDPCs may be feasible candidates for therapeutic intervention after SCI and central nervous system disorders in humans.
Resumo:
Abstract Bradykinin (BK) was shown to stimulate the production of physiologically active metabolites, blood-brain barrier disruption, and brain edema. The aim of this prospective study was to measure BK concentrations in blood and cerebrospinal fluid (CSF) of patients with traumatic brain injury (TBI), subarachnoid hemorrhage (SAH), intracerebral hemorrhage (ICH), and ischemic stroke and to correlate BK levels with the extent of cerebral edema and intracranial pressure (ICP). Blood and CSF samples of 29 patients suffering from acute cerebral lesions (TBI, 7; SAH,: 10; ICH, 8; ischemic stroke, 4) were collected for up to 8 days after insult. Seven patients with lumbar drainage were used as controls. Edema (5-point scale), ICP, and the GCS (Glasgow Coma Score) at the time of sample withdrawal were correlated with BK concentrations. Though all plasma-BK samples were not significantly elevated, CSF-BK levels of all patients were significantly elevated in overall (n=73) and early (≤72 h) measurements (n=55; 4.3±6.9 and 5.6±8.9 fmol/mL), compared to 1.2±0.7 fmol/mL of controls (p=0.05 and 0.006). Within 72 h after ictus, patients suffering from TBI (p=0.01), ICH (p=0.001), and ischemic stroke (p=0.02) showed significant increases. CSF-BK concentrations correlated with extent of edema formation (r=0.53; p<0.001) and with ICP (r=0.49; p<0.001). Our results demonstrate that acute cerebral lesions are associated with increased CSF-BK levels. Especially after TBI, subarachnoid and intracerebral hemorrhage CSF-BK levels correlate with extent of edema evolution and ICP. BK-blocking agents may turn out to be effective remedies in brain injuries.
Resumo:
This adult cohort determined the incidence and patients' short-term outcomes of severe traumatic brain injury (sTBI) in Switzerland and age-related differences. A prospective cohort study with a follow-up at 14 days was performed. Patients ≥16 years of age sustaining sTBI and admitted to 1 of 11 trauma centers were included. sTBI was defined by an Abbreviated Injury Scale of the head (HAIS) score >3. The centers participated from 6 months to 3 years. The results are presented as percentages, medians, and interquartile ranges (IQRs). Subgroup analyses were performed for patients ≤65 years (younger) and >65 (elderly). sTBI was observed in 921 patients (median age, 55 years; IQR, 33-71); 683 (74.2%) were male. Females were older (median age, 67 years; IQR, 42-80) than males (52; IQR, 31-67; p<0.00001). The estimated incidence was 10.58 per 100,000 inhabitants per year. Blunt trauma was observed in 879 patients (95.4%) and multiple trauma in 283 (30.7%). Median Glasgow Coma Score (GCS) on the scene was 9 (IQR 4-14; 8 in younger, 12 in elderly) and in emergency departments 5 (IQR, 3-14; 3 in younger, 8 in elderly). Trauma mechanisms included the following: 484 patients with falls (52.6%; younger, 242 patients [50.0%]; elderly, 242 [50.0%]), 291 with road traffic accidents (31.6%; younger, 237 patients [81.4%]; elderly, 54 [18.6%]), and 146 with others (15.8%). Mortality was 30.2% (24.5% in younger, 40.9% in elderly). Median GCS at 14 days was 15 (IQR, 14-15) without differences among subgroups. Estimated incidence of sTBI in Switzerland was low, age was high, and mortality considerable. The elderly had higher initial GCS and a higher death rate, but high GCS at 14 days.
Resumo:
BACKGROUND: Antipyresis is a common clinical practice in intensive care, although it is unknown if fever is harmful, beneficial, or a negligible adverse effect of infection and inflammation. METHODS: In a randomized study, rectal temperature and discomfort were assessed in 38 surgical intensive care unit patients without neurotrauma or severe hypoxemia and with fever (temperature >/=38.5 degrees C) and systemic inflammatory response syndrome. Eighteen patients received external cooling while 20 received no antipyretic treatment. RESULTS: Temperature and discomfort decreased similarly in both groups after 24 hours. No significant differences in recurrence of fever, incidence of infection, antibiotic therapy, intensive care unit and hospital length of stay, or mortality were noted between the groups. CONCLUSIONS: These results suggest that the systematic suppression of fever may not be useful in patients without severe cranial trauma or significant hypoxemia. Letting fever take its natural course does not seem to harm patients with systemic inflammatory response syndrome or influence the discomfort level and may save costs.
Resumo:
It has been already demonstrated that thyroid hormone (T3) is one of the most important stimulating factors in peripheral nerve regeneration. We have recently shown that local administration of T3 in silicon tubes at the level of the transected rat sciatic nerve enhanced axonal regeneration and improved functional recovery. Silicon, however, cannot be used in humans because it causes a chronic inflammatory reaction. Therefore, in order to provide future clinical applications of thyroid hormone in human peripheral nerve lesions, we carried out comparative studies on the regeneration of transected rat sciatic nerve bridged either by biodegradable P(DLLA-(-CL) or by silicon nerve guides, both guides filled with either T3 or phosphate buffer. Our macroscopic observation revealed that 85% of the biodegradable guides allowed the expected regeneration of the transected sciatic nerve. The morphological, morphometric and electrophysiological analysis showed that T3 in biodegradable guides induces a significant increase in the number of myelinated regenerated axons (6862 +/- 1831 in control vs. 11799 +/- 1163 in T3-treated). Also, T3 skewed the diameter of myelinated axons toward larger values than in controls. Moreover, T3 increases the compound muscle action potential amplitude of the flexor and extensor muscles of the treated rats. This T3 stimulation in biodegradable guides was equally well to that obtained by using silicone guides. In conclusion, the administration of T3 in biodegradable guides significantly improves sciatic nerve regeneration, confirming the feasibility of our technique to provide a serious step towards future clinical application of T3 in human peripheral nerve injuries.
Resumo:
An autoregulation-oriented strategy has been proposed to guide neurocritical therapy toward the optimal cerebral perfusion pressure (CPPOPT). The influence of ventilation changes is, however, unclear. We sought to find out whether short-term moderate hypocapnia (HC) shifts the CPPOPT or affects its detection. Thirty patients with traumatic brain injury (TBI), who required sedation and mechanical ventilation, were studied during 20 min of normocapnia (5.1±0.4 kPa) and 30 min of moderate HC (4.4±3.0 kPa). Monitoring included bilateral transcranial Doppler of the middle cerebral arteries (MCA), invasive arterial blood pressure (ABP), and intracranial pressure (ICP). Mx -autoregulatory index provided a measure for the CPP responsiveness of MCA flow velocity. CPPOPT was assessed as the CPP at which autoregulation (Mx) was working with the maximal efficiency. During normocapnia, CPPOPT (left: 80.65±6.18; right: 79.11±5.84 mm Hg) was detectable in 12 of 30 patients. Moderate HC did not shift this CPPOPT but enabled its detection in another 17 patients (CPPOPT left: 83.94±14.82; right: 85.28±14.73 mm Hg). The detection of CPPOPT was achieved via significantly improved Mx-autoregulatory index and an increase of CPP mean. It appeared that short-term moderate HC augmented the detection of an optimum CPP, and may therefore usefully support CPP-guided therapy in patients with TBI.
Resumo:
The benefit of induced hyperventilation for intracranial pressure (ICP) control after severe traumatic brain injury (TBI) is controversial. In this study, we investigated the impact of early and sustained hyperventilation on compliances of the cerebral arteries and of the cerebrospinal (CSF) compartment during mild hyperventilation in severe TBI patients. We included 27 severe TBI patients (mean 39.5 ± 3.4 years, 6 women) in whom an increase in ventilation (20% increase in respiratory minute volume) was performed during 50 min as part of a standard clinical CO(2) reactivity test. Using a new mathematical model, cerebral arterial compliance (Ca) and CSF compartment compliance (Ci) were calculated based on the analysis of ICP, arterial blood pressure, and cerebral blood flow velocity waveforms. Hyperventilation initially induced a reduction in ICP (17.5 ± 6.6 vs. 13.9 ± 6.2 mmHg; p < 0.001), which correlated with an increase in Ci (r(2) = 0.213; p = 0.015). Concomitantly, the reduction in cerebral blood flow velocities (CBFV, 74.6 ± 27.0 vs. 62.9 ± 22.9 cm/sec; p < 0.001) marginally correlated with the reduction in Ca (r(2) = 0.209; p = 0.017). During sustained hyperventilation, ICP increased (13.9 ± 6.2 vs. 15.3 ± 6.4 mmHg; p < 0.001), which correlated with a reduction in Ci (r(2) = 0.297; p = 0.003), but no significant changes in Ca were found during that period. The early reduction in Ca persisted irrespective of the duration of hyperventilation, which may contribute to the lack of clinical benefit of hyperventilation after TBI. Further studies are needed to determine whether monitoring of arterial and CSF compartment compliances may detect and prevent an adverse ischemic event during hyperventilation.
Resumo:
Lactate may represent a supplemental fuel for the brain. We examined cerebral lactate metabolism during prolonged brain glucose depletion (GD) in acute brain injury (ABI) patients monitored with cerebral microdialysis (CMD). Sixty episodes of GD (defined as spontaneous decreases of CMD glucose from normal to low [<1.0 mmol/L] for at least 2 h) were identified among 26 patients. During GD, we found a significant increase of CMD lactate (from 4±2.3 to 5.4±2.9 mmol/L), pyruvate (126.9±65.1 to 172.3±74.1 μmol/L), and lactate/pyruvate ratio (LPR; 27±6 to 35±9; all, p<0.005), while brain oxygen and blood lactate remained normal. Dynamics of lactate and glucose supply during GD were further studied by analyzing the relationships between blood and CMD samples. There was a strong correlation between blood and brain lactate when LPR was normal (r=0.56; p<0.0001), while an inverse correlation (r=-0.11; p=0.04) was observed at elevated LPR >25. The correlation between blood and brain glucose also decreased from r=0.62 to r=0.45. These findings in ABI patients suggest increased cerebral lactate delivery in the absence of brain hypoxia when glucose availability is limited and support the concept that lactate acts as alternative fuel.
Resumo:
Background. Sleep-wake disturbances are among the most persistent sequelae after traumatic brain injury (TBI) and probably arise during the hospital stay following TBI. These disturbances are characterized by difficulties sleeping at night and staying awake during the day. Objective. The aim of the present study was to document rest-activity cycle consolidation in acute moderate/severe TBI using actigraphy and to assess its association with injury severity and outcome. Methods. In all, 16 hospitalized patients (27.1 ± 11.3 years) with moderate/severe TBI wore actigraphs for 10 days, starting in the intensive care unit (ICU) when continuous sedation was discontinued and patients had reached medical stability. Activity counts were summed for daytime (7:00-21:59 hours) and nighttime periods (22:00-6:59 hours). The ratio of daytime period activity to total 24-hour activity was used to quantify rest-activity cycle consolidation. An analysis of variance was carried out to characterize the evolution of the daytime activity ratio over the recording period. Results. Rest-activity cycle was consolidated only 46.6% of all days; however, a significant linear trend of improvement was observed over time. Greater TBI severity and longer ICU and hospital lengths of stay were associated with poorer rest-activity cycle consolidation and evolution. Patients with more rapid return to consolidated rest-activity cycle were more likely to have cleared posttraumatic amnesia and have lower disability at hospital discharge. Conclusions. Patients with acute moderate/ severe TBI had an altered rest-activity cycle, probably reflecting severe fragmentation of sleep and wake episodes, which globally improved over time. A faster return to rest-activity cycle consolidation may predict enhanced brain recovery.
Resumo:
El traumatismo craneoencefálico, es la epidemia silenciosa de nuestra época, que genera gastos en salud, en países como Estados Unidos, cercanos a los 60 billones de dólares anuales, y cerca de 400 billones en rehabilitación de los discapacitados. El pilar del manejo médico del trauma craneoencefálico moderado o severo, es la osmoterapia, principalmente con sustancias como el manitol y las soluciones hipertónicas. Se realizó la revisión de 14 bases de datos, encontrando 4657754 artículos, quedando al final 40 artículos después de un análisis exhaustivo, que se relacionaban con el manejo de la hipertensión endocraneana y terapia osmótica. Resultados: Se compararon diferentes estudios, encontrando gran variabilidad estos, sin homogenización en los análisis estadísticos, y la poca rigurosidad no permitieron, la recolección de datos y la comparación entre los diferentes estudios, no permitió realizar el meta-análisis y por esto se decidió la realización de una revisión sistemática de la literatura. Se evidenció principalmente tres cosas: la primera es la poca rigurosidad con la que se realizan los estudios clínicos; la segunda, es que aún falta mucha más investigación principalmente, la presencia de estudios clínicos aleatorizados multicéntricos, que logren dar una sólida evidencia y que genere validez científica que se requiere, a pesar de la evidencia clara en la práctica clínica; la tercera es la seguridad para su uso, con poca presencia de complicaciones para las soluciones salinas hipertónicas.