998 resultados para neuronal culture
Resumo:
Astrocytes are essential for neuronal function and survival, so both cell types were included in a human neurotoxicity test-system to assess the protective effects of astrocytes on neurons, compared with a culture of neurons alone. The human NT2.D1 cell line was differentiated to form either a co-culture of post-mitotic NT2.N neuronal (TUJ1, NF68 and NSE positive) and NT2.A astrocytic (GFAP positive) cells (∼2:1 NT2.A:NT2.N), or an NT2.N mono-culture. Cultures were exposed to human toxins, for 4 h at sub-cytotoxic concentrations, in order to compare levels of compromised cell function and thus evidence of an astrocytic protective effect. Functional endpoints examined included assays for cellular energy (ATP) and glutathione (GSH) levels, generation of hydrogen peroxide (H2O2) and caspase-3 activation. Generally, the NT2.N/A co-culture was more resistant to toxicity, maintaining superior ATP and GSH levels and sustaining smaller significant increases in H2O2 levels compared with neurons alone. However, the pure neuronal culture showed a significantly lower level of caspase activation. These data suggest that besides their support for neurons through maintenance of ATP and GSH and control of H2O2 levels, following exposure to some substances, astrocytes may promote an apoptotic mode of cell death. Thus, it appears the use of astrocytes in an in vitro predictive neurotoxicity test-system may be more relevant to human CNS structure and function than neuronal cells alone. © 2007 Elsevier Ltd. All rights reserved.
Resumo:
Information processing and storage in the brain may be presented by the oscillations and cell assemblies. Here we address the question of how individual neurons associate together to assemble neural networks and present spontaneous electrical activity. Therefore, we dissected the neonatal brain at three different levels: acute 1-mm thick brain slice, cultured organotypic 350-µm thick brain slice and dissociated neuronal cultures. The spatio-temporal properties of neural activity were investigated by using a 60-channel Micro-electrode arrays (MEA), and the cell assemblies were studied by using a template-matching method. We find local on-propagating as well as large- scale propagating spontaneous oscillatory activity in acute slices, spontaneous network activity characterized by synchronized burst discharges in organotypic cultured slices, and autonomous bursting behaviour in dissociated neuronal cultures. Furthermore, repetitive spike patterns emerge after one week of dissociated neuronal culture and dramatically increase their numbers as well as their complexity and occurrence in the second week. Our data indicate that neurons can self-organize themselves, assembly to a neural network, present spontaneous oscillations, and emerge spatio-temporal activation patterns. The spontaneous oscillations and repetitive spike patterns may serve fundamental functions for information processing and storage in the brain.
Resumo:
SUMMARY Acid-sensing ion channels (ASICs) are non-voltage gated sodium channels. They are activated by rapid extracellular acidification and generate an inactivating inward current. Four ASIC genes have been cloned: ASIC1, 2, 3 and 4, with variants a and b for ASIC1and AS1C2. ASICs are expressed in neurons of the central (CNS) and peripheral nervous system (PNS). In the CNS, ASICs have a role in learning, memory, as well as in neuronal death in ischemia. In the PNS, ASICs are involved in the perception of acid-induced pain, as well as in mechanoperception. In one part of my thesis project, we addressed the question of the mechanism of regulation of ASIC1 a by the serine protease trypsin at the molecular level. Trypsin modifies the function of ASIC1 a but not of ASIC1b. In order to identify the channel region responsible for this effect, we created chimeras between ASIC1 a and 1b. Subsequently, to identify the exact trypsin target(s), we mutated predicted trypsin sites in the region identified by the chimera. In the second part of a project, we investigated the role of ASICs at the cellular level, in neuronal signaling. Using the whole-cell patch clamp in hippocampal neuronal culture, we studied the potential involvement of ASICs in action potential (AP) generation. In the first part of the thesis work, we showed that trypsin modifies ASIC1a function: it shifts the pH activation and the steady-state inactivation curve towards more acidic values and accelerates the time course of the channel recovery from inactivation. We also showed that trypsin cleaves ASIC1a and that the functional effect and a channel cleavage correlate. In the inactivated state, channels cannot be modified by trypsin. Cleavage occurs in a channel region that is also important for inactivation of all ASICs; a part of this region is critical for the inhibition of ASIC1 a by the spider toxin Psalmotoxin1. In the second part of the thesis work, we showed that ASIC activity can modulate AP generation. ASIC activity by itself can induce trains of APs. In situations in which this activity by itself is not sufficient to induce APs, it can contribute to AP generation. During high neuronal activity, ASIC activity can block already existing trains of APs. In conclusion, depending on the activity of neuron in a particular moment, ASICs can differently modulate AP generation; they can induce, facilitate or inhibit APs. We also showed that trypsin changes the capability of ASICs to modulate AP generation by shifting the pH dependence to more acidic values, which adapts channel gating to pH conditions which may occur in pathological conditions such as ischemia. Our finding that trypsin modifies ASIC1 a function identifies a novel pharmacological tool, and proposes a mechanism of ASIC1a regulation that may have a physiological importance. The identification of the exact site of trypsin action gives insight to the molecular mechanisms of ASIC regulation. This work proposes a role in modulation of AP generation for ASICs in the CNS. RESUME Les canaux ASIC sont les canaux ioniques activés par l'acidification rapide extracellulaire. Activés, ils génèrent un courant entrant qui inactive en présence de stimulus acide. Quatre gènes ASIC ont été clonés, ASIC1, 2, 3 et 4, avec les variants a et b pour ASIC1 et 2. Les ASICs sont exprimés dans les neurones du système nerveux central (SNC) et périphérique (SNP). Dans le SNC, les ASIC ont un rôle dans le mémoire, apprentissage et la mort neuronale dans t'ischémie. Dans le SNP, ils ont un rôle dans la perception de la douleur et méchanosensation. Dans une partie de mon projet de thèse, nous avons étudié les mécanismes de la régulation d'ASIC1a par la sérine-protéase trypsine au niveau moléculaire. La trypsine modifie la fonction d'ASIC1a et pas ASIC1b. Nous avons créé les chimères entre ASIC1 a et 1 b, afin d'identifier la région du canal responsable pour l'effet. Pour identifier le(s) site(s) exactes de l'action de la trypsine, nous avons muté les sites potentiels de la trypsine dans la région identifiée par les chimères. Dans la deuxième partie du projet, nous avons étudié le rôle des ASICs au niveau cellulaire. En utilisant la technique du patch clamp dans les cultures des neurones de l'hippocampe, nous avons étudié l'implication des ASICs dans la génération des potentiels d'action (PA). Nous avons montré que la trypsine agit sur le canal ASIC1a ; elle décale l'activation et « steady-state » inactivation vers les valeurs plus acides, et elle raccourcit le temps du « recovery » du canal. La trypsine coupe ASIC1a sur le résidu K145 et l'effet fonctionnel et la coupure corrèlent. Nous avons identifié la région du canal responsable pour l'inactivation de tous les ASICs ; une partie de cette région est responsable pour ['inhibition d'ASIC1 a par la Psalmotoxinel . Nous avons montré que les ASICs peuvent moduler la génération des PAs. L'activité des ASICs peut induire les trains des PAs. Quand l'activité des ASICs n'est pas suffisante pour induire le PA, elle peut contribuer à sa génération. Pendant l'activité neuronale forte, l'activité des ASICs peut bloquer les trains des PAs qui existent déjà. En conclusion, dépendant de l'activité neuronale, les ASICs peuvent moduler la génération des PAs différemment ; ils peuvent induire, faciliter ou inhiber les PAs. La trypsine change la capacité des ASICs de moduler les PAs. Après l'action de la trypsine, les ASICs peuvent moduler la génération des PAs dans les conditions légèrement acides, suivies par les fluctuations du pH acide, qui peuvent exister dans l'ischémie. Le fait que la trypsine agit sur ASIC1a définit l'outil pharmacologique et propose le mécanisme de la régulation d'ASICI a qui pourrait avoir l'importance physiologique. L'identification du site de l'action de la trypsine éclaircit les mécanismes moléculaires de la régulation des ASICs. Cette étude propose un rôle des ASICs dans la modulation de la génération des PAs. Résumé pour le public large Les neurones sont les cellules de système nerveux dont la fonction est la signalisation. Comme toutes les autres cellules, les neurones ont une membrane qui sépare l'intérieur du milieu extérieur. Cette membrane est imperméable pour des particules chargées (ions). Dans cette membrane existent les protéines spécifiques, « canaux », qui permettent le transport des ions d'un côté de la membrane à l'autre, comme réponse aux stimuli différents. Ce transport des ions à travers la membrane génère un courant, qu'on peut mesurer. Ce courant est la base de la communication entre les neurones, ou, ce qu'on appelle la signalisation neuronale. Quand ce courant est suffisamment grand, il permet la génération du potentiel d'action, qui est le message principal de communication neuronale. Les canaux ASIC (acid-sensing ion channel), que nous étudions dans le laboratoire, sont activés par les acides. Les acides sont relâchés dans beaucoup de situations dans le système nerveux. Les ASIC ont été découverts récemment (en 1996), et nous ne connaissons pas encore très bien toutes les fonctions de ces canaux. Nous savons qu'ils ont un rôle dans le mémoire, apprentissage, la sensation de la douleur et l'infarctus cérébral. Dans la première partie de ce projet de thèse, nous avons voulu mieux comprendre comment fonctionnent ces canaux. Pour faire ça, nous avons étudié la régulation des ASICs par une protéine, trypsine, qui coupe le canal ASIC. Nous avons étudié ou exactement la trypsine coupe le canal et quels effets ça produit sur la fonction du canal. Dans la deuxième partie du projet de thèse, nous avons voulu mieux connaître comment le canal fonctionne au niveau de la cellule, comment il interagit avec les autres canaux et si il a un rôle dans la génération des potentiels d'action. Nous avons pu montrer que la trypsine change la fonction du canal, ce qui lui permet de fonctionner différemment. Nous avons aussi déterminé ou exactement ta trypsine coupe le canal. Au niveau de la cellule, nous avons montré que les ASIC peuvent moduler la génération des potentiels d'action, étant, dépendant de l'activité du neurone, soit activateurs, soit inhibiteurs. La trypsine est une molécule qui peut être libérée dans le système nerveux pendant certaines conditions, comme l'infarctus cérébral. A cause de ça, les connaissances que la trypsine agit sur le anal ASIC pourraient être important physiologiquement. La connaissance de l'endroit exacte ou la trypsine coupe le canal nous aide à mieux comprendre la relation structure-fonction du canal. La modulation de la génération des potentiels d'actions par les ASIC indique que ces canaux peuvent avoir un rôle important dans la signalisation neuronale.
Resumo:
Résumé : Le virus de la maladie de Carré (en anglais: canine distemper virus, CDV) qui est pathogène pour les chiens et autres carnivores, est très semblable au virus de la rougeole humaine (en anglais MV). Ces deux virus font partie du genre des Morbillivirus qui appartient à la famille des Paramyxoviridae. Ils induisent des complications dans le système nerveux central (SNC). Au stade précoce et aigu de l'infection du SNC, le CDV induit une démyélinisation (1). Ce stade évolue dans certains cas vers une infection chronique avec progression de la démyélinisation. Pendant le stade précoce, qui suit en général de trois semaines les premiers symptômes, le processus de démyélinisation est associé à la réplication du virus et n'est pas considéré comme inflammatoire (1). Par contre, au stade chronique, la progression des plaques de démyélinisation semble être plutôt liée à des processus immunogènes caractéristiques (2), retrouvés également dans la sclérose en plaques (SEP) chez les humains. Pour cette raison, le CDV est considéré comme un modèle pour la SEP humaine et aussi pour l'étude des maladies et complications induites par les Morbillivirus en général (3). Dans notre laboratoire, nous avons utilisé la souche A75/17-CDV, qui est considérée comme le modèle des souches neurovirulentes de CDV. Nous avons cherché en premier lieu à établir un système robuste pour infecter des cultures neuronales avec le CDV. Nous avons choisi les cultures primaires de l'hippocampe du nouveau-né de rat (4), que nous avons ensuite infecté avec une version modifiée du A75/17, appelée rgA75/17-V (5). Dans ces cultures, nous avons prouvé que le CDV infecte des neurones et des astrocytes. Malgré une infection qui se diffuse lentement entre les cellules, cette infection cause une mort massive aussi bien des neurones infectés que non infectés. En parallèle, les astrocytes perdent leur morphologie de type étoilé pour un type polygonal. Finalment, nous avons trouvé une augmentation importante de la concentration en glutamate dans le milieu de culture, qui laisse présumer une sécrétion de glutamate par les cultures infectées (6). Nous avons ensuite étudié le mécanisme des effets cytopathiques induits par le CDV. Nous avons d'abord démontré que les glycoprotéines de surface F et H du CDV s'accumulent massivement dans le réticulum endoplasmique (RE). Cette accumulation déclenche un stress du RE, qui est caractérisé par une forte expression du facteur de transcription proapoptotique CHOP/GADD 153 et de le la calreticuline (CRT). La CRT est une protéine chaperonne localisée dans le RE et impliquée dans l'homéostasie du calcium (Ca2+) et dans le repliement des protéines. En transfectant des cellules de Vero avec des plasmides codant pour plusieurs mutants de la glycoprotéine F de CDV, nous avons démontré une corrélation entre l'accumulation des protéines virales dans le RE et l'augmentation de l'expression de CRT, le stress du RE et la perte de l'homéostasie du Ca2+. Nous avons obtenu des résultats semblables avec des cultures de cellules primaires de cerveau de rat. Ces résultats suggèrent que la CRT joue un rôle crucial dans les phénomènes neurodégénératifs pendant l'infection du SNC, notamment par le relazgage du glutamate via le Ca2+. De manière intéressante, nous démontrons également que l'infection de CDV induit une fragmentation atypique de la CRT. Cette fragmentation induit une re-localisation et une exposition sélective de fragments amino-terminaux de la CRT, connus pour êtres fortement immunogènes à la surface des cellules infectées et non infectées. A partir de ce résultat et des résultats précédents, nous proposons le mécanisme suivant: après l'infection par le CDV, la rétention dans le RE des protéines F et H provoque un stress du RE et une perte de l'homéostasie du Ca2+. Ceci induit la libération du glutamate, qui cause une dégénération rapide du SNC (sur plusieurs jours ou semaines) correspondant à la phase aiguë de la maladie chez le chien. En revanche, les fragments amino-terminaux de la CRT libérés à la surface des cellules infectées peuvent avoir un rôle important dans l'établissement d'une démyélinisation d'origine immunogène, typique de la phase chronique de l'infection de CDV. Summary : The dog pathogen canine distemper virus (CDV), closely related to the human pathogen measles virus (MV), belongs to the Morbillivirus genus of the Paramyxoviridae family. Both CDV and NIV induce complications in the central nervous system (CNS). In the acute early stage of the infection in CNS, the CDV infection induces demyelination. This stage is sometimes followed by a late persistent stage of infection with a progression of the demyelinating lesions (1). The acute early stage occurs around three weeks after the infection and demyelinating processes are associated with active virus replication and are not associated to inflammation (1). In contrast during late persistent stage, the demyelination plaque progression seems to be mainly due to an immunopathological process (2), which characteristics are shared in many aspects with the human disease multiple sclerosis (MS). For these reasons, CDV is considered as a model for human multiple sclerosis, as well as for the study of Morbillivirus-mediated pathogenesis (3). In our laboratory, we used the A75/17-CDV strain that is considered to be the prototype of neurovirulent CDV strain. We first sought to establish a well characterized and robust model for CDV infection of a neuronal culture. We chose primary cultures from newborn rat hippocampes (4) that we infected with a modified version of A75/17, called rgA75/17-V (5). In these cultures, we showed that CDV infects both neurons and astrocytes. While the infection spreads only slowly to neighbouring cells, it causes a massive death of neurons, which includes also non-infected neurons. In parallel, astrocytes undergo morphological changes from the stellate type to the polygonal type. The pharmacological blocking of the glutamate receptors revealed an implication of glutamatergic signalling in the virus-mediated cytopathic effect. Finally, we found a drastic increase concentration of glutamate in the culture medium, suggesting that glutamate was released from the cultured cells (6). We further studied the mechanism of the CDV-induced cytopathic effects. We first demonstrated that the CDV surface glycoprotein F and H markedly accumulate in the endoplasmic reticulum (ER). This accumulation triggers an ER stress, which is characterized by increased expression of the proapoptotic transcription factor CHOP/GADD 153 and calreticulin (CRT). CRT is an ER resident chaperon involved in the Ca2+ homeostasis and in the response to misfolded proteins. Transfections of Vero cells with plasmids encoding various CDV glycoprotein mutants reveal a correlation between accumulation of viral proteins in the ER, CRT overexpression, ER stress and alteration of ER Ca2+ homeostasis. Importantly, similar results are also obtained in primary cell cultures from rat brain. These results suggest that CRT plays a crucial role in CNS infection, particularly due to CRT involvement in Ca2+ mediated glutamate releases, and subsequent neurodegenerative disorders. Very intriguingly, we also demonstrated that CDV infection induces an atypical CRT fragmentation, with relocalisation and selective exposure of the highly immunogenic CRT N-terminal fragments at the surface of infected and neighbouring non-infected cells. Altogether our results combined with previous findings suggest the following scenario. After CDV infection, F and H retention alter Ca2+ homeostasis, and induce glutamate release, which in turn causes rapid CNS degeneration (within days or a week) corresponding to the acute phase of the disease in dogs. In contrast, the CRT N-terminal fragments released at the surface of infected cells may rather have an important role in the establishment of the autoimmune demyelination in the late stage of CDV infection.
Resumo:
There are only a few studies on the ontogeny and differentiation process of the hypothalamic supraoptic-paraventriculo-neurohypophysial neurosecretory system. In vitro neuron survival improves if cells are of embryonic origin; however, surviving hypothalamic neurons in culture were found to express small and minimal amounts of arginine-vasopressin (AVP) and oxytocin (OT), respectively. The aim of this study was to develop a primary neuronal culture design applicable to the study of magnocellular hypothalamic system functionality. For this purpose, a primary neuronal culture was set up after mechanical dissociation of sterile hypothalamic blocks from 17-day-old Sprague-Dawley rat embryos (E17) of both sexes. Isolated hypothalamic cells were cultured with supplemented (B27)-NeuroBasal medium containing an agent inhibiting non-neuron cell proliferation. The neurosecretory process was characterized by detecting AVP and OT secreted into the medium on different days of culture. Data indicate that spontaneous AVP and OT release occurred in a culture day-dependent fashion, being maximal on day 13 for AVP, and on day 10 for OT. Interestingly, brain-derived neurotrophic factor (BDNF) and Angiotensin II (A II) were able to positively modulate neuropeptide output. Furthermore, on day 17 of culture, non-specific (high-KCl) and specific (Angiotensin II) stimuli were able to significantly (P < 0.05) enhance the secretion of both neuropeptides over respective baselines. This study suggests that our experimental design is useful for the study of AVP- and OT-ergic neuron functionality and that BDNF and A II are positive modulators of embryonic hypothalamic cell development.
Resumo:
RESUMENeurones transitoires jouant un rôle de cibles intermédiaires dans le guidage des axones du corps calleuxLe guidage axonal est une étape clé permettant aux neurones d'établir des connexions synaptiques et de s'intégrer dans un réseau neural fonctionnel de manière spécifique. Des cellules-cibles intermédiaires appelées « guidepost » aident les axones à parcourir de longues distances dans le cerveau en leur fournissant des informations directionnelles tout au long de leur trajet. Il a été démontré que des sous-populations de cellules gliales au niveau de la ligne médiane guident les axones du corps calleux (CC) d'un hémisphère vers l'autre. Bien qu'il fût observé que le CC en développement contenait aussi des neurones, leur rôle était resté jusqu'alors inconnu.La publication de nos résultats a montré que pendant le développement embryonnaire, le CC contient des glies mais aussi un nombre considérable de neurones glutamatergiques et GABAergiques, nécessaires à la formation du corps calleux (Niquille et al., PLoS Biology, 2009). Dans ce travail, j'ai utilisé des techniques de morphologie et d'imagerie confocale 3D pour définir le cadre neuro-anatomique de notre modèle. De plus, à l'aide de transplantations sur tranches in vitro, de co-explants, d'expression de siRNA dans des cultures de neurones primaires et d'analyse in vivo sur des souris knock-out, nous avons démontré que les neurones du CC guident les axones callosaux en partie grâce à l'action attractive du facteur de guidage Sema3C sur son récepteur Npn- 1.Récemment, nous avons étudié l'origine, les aspects dynamiques de ces processus, ainsi que les mécanismes moléculaires impliqués dans la mise en place de ce faisceau axonal (Niquille et al., soumis). Tout d'abord, nous avons précisé l'origine et l'identité des neurones guidepost GABAergiques du CC par une étude approfondie de traçage génétique in vivo. J'ai identifié, dans le CC, deux populations distinctes de neurones GABAergiques venant des éminences ganglionnaires médiane (MGE) et caudale (CGE). J'ai ensuite étudié plus en détail les interactions dynamiques entre neurones et axones du corps calleux par microscopie confocale en temps réel. Puis nous avons défini le rôle de chaque sous-population neuronale dans le guidage des axones callosaux et de manière intéressante les neurones GABAergic dérivés de la MGE comme ceux de la CGE se sont révélés avoir une action attractive pour les axones callosaux dans des expériences de transplantation. Enfin, nous avons clarifié la base moléculaire de ces mécanismes de guidage par FACS sorting associé à un large criblage génétique de molécules d'intérêt par une technique très sensible de RT-PCR et ensuite ces résultats ont été validés par hybridation in situ.Nous avons également étudié si les neurones guidepost du CC étaient impliqués dans son agénésie (absence de CC), présente dans nombreux syndromes congénitaux chez 1 humain. Le gène homéotique Aristaless (Arx) contrôle la migration des neurones GABAergiques et sa mutation conduit à de nombreuses pathologies humaines, notamment la lissencéphalie liée à IX avec organes génitaux anormaux (XLAG) et agénésie du CC. Fait intéressant, nous avons constaté qu'ARX est exprimé dans toutes les populations GABAergiques guidepost du CC et que les embryons mutant pour Arx présentent une perte drastique de ces neurones accompagnée de défauts de navigation des axones (Niquille et al., en préparation). En outre, nous avons découvert que les souris déficientes pour le facteur de transcription ciliogenic RFX3 souffrent d'une agénésie du CC associé avec des défauts de mise en place de la ligne médiane et une désorganisation secondaire des neurones glutamatergiques guidepost (Benadiba et al., submitted). Ceci suggère fortement l'implication potentielle des deux types de neurones guidepost dans l'agénésie du CC chez l'humain.Ainsi, mon travail de thèse révèle de nouvelles fonctions pour ces neurones transitoires dans le guidage axonal et apporte de nouvelles perspectives sur les rôles respectifs des cellules neuronales et gliales dans ce processus.ABSTRACTRole of transient guidepost neurons in corpus callosum development and guidanceAxonal guidance is a key step that allows neurons to build specific synaptic connections and to specifically integrate in a functional neural network. Intermediate targets or guidepost cells act as critical elements that help to guide axons through long distance in the brain and provide information all along their travel. Subpopulations of midline glial cells have been shown to guide corpus callosum (CC) axons to the contralateral cerebral hemisphere. While neuronal cells are also present in the developing corpus callosum, their role still remains elusive.Our published results unravelled that, during embryonic development, the CC is populated in addition to astroglia by numerous glutamatergic and GABAergic guidepost neurons that are essential for the correct midline crossing of callosal axons (Niquille et al., PLoS Biology, 2009). In this work, I have combined morphological and 3D confocal imaging techniques to define the neuro- anatomical frame of our system. Moreover, with the use of in vitro transplantations in slices, co- explant experiments, siRNA manipulations on primary neuronal culture and in vivo analysis of knock-out mice we have been able to demonstrate that CC neurons direct callosal axon outgrowth, in part through the attractive action of Sema3C on its Npn-1 receptor.Recently, we have studied the origin, the dynamic aspects of these processes as well as the molecular mechanisms involved in the establishment of this axonal tract (Niquille et al., submitted). First, we have clarified the origin and the identity of the CC GABAergic guidepost neurons using extensive in vivo cell fate-mapping experiments. We identified two distinct GABAergic neuronal subpopulations, originating from the medial (MGE) and caudal (CGE) ganglionic eminences. I then studied in more details the dynamic interactions between CC neurons and callosal axons by confocal time-lapse video microscopy and I have also further characterized the role of each guidepost neuronal subpopulation in callosal guidance. Interestingly, MGE- and CGE-derived GABAergic neurons are both attractive for callosal axons in transplantation experiments. Finally, we have dissected the molecular basis of these guidance mechanisms by using FACS sorting combined with an extensive genetic screen for molecules of interest by a sensitive RT-PCR technique, as well as, in situ hybridization.I have also investigated whether CC guidepost neurons are involved in agenesis of the CC which occurs in numerous human congenital syndromes. Aristaless-related homeobox gene (Arx) regulates GABAergic neuron migration and its mutation leads to numerous human pathologies including X-linked lissencephaly with abnormal genitalia (XLAG) and severe CC agenesis. Interestingly, I found that ARX is expressed in all the guidepost GABAergic neuronal populations of the CC and that Arx-/- embryos exhibit a drastic loss of CC GABAergic interneurons accompanied by callosal axon navigation defects (Niquille et al, in preparation). In addition, we discovered that mice deficient for the ciliogenic transcription factor RFX3 suffer from CC agenesis associated with early midline patterning defects and a secondary disorganisation of guidepost glutamatergic neurons (Benadiba et al., submitted). This strongly points out the potential implication of both types of guidepost neurons in human CC agenesis.Taken together, my thesis work reveals novel functions for transient neurons in axonal guidance and brings new perspectives on the respective roles of neuronal and glial cells in these processes.
Resumo:
Adenosine Is known to modulate neuronal activity within the nucleus tractus solitarius (NTS). The modulatory effect of adenosine A, receptors (A(1R)) on alpha(2)-adrenoceptors (Adr(2R)) was evaluated using quantitative radioautography within NTS subnuclei and using neuronal culture of normotensive (WKY) and spontaneously hypertensive rats (SHR). Radioautography was used in a saturation experiment to measure Adr2R binding parameters (B(max), K(d)) In the presence of 3 different concentrations of N(6)-cyclopentyladenosine (CPA), an A(1R) agonist. Neuronal culture confirmed our radioautographic results. [(3)H]RX821002, an Adr(2R) antagonist, was used as a ligand for both approaches. The dorsomedial/dorsolateral subnucleus of WKY showed an increase in B(max) values (21%) Induced by 10 nmol/L of CPA. However, the subpostremal subnucleus showed a decrease in Kd values (24%) induced by 10 nmol/L of CPA. SHR showed the same pattern of changes as WKY within the same subnuclei; however, the modulatory effect of CPA was induced by I nmol/L (increased B(max), 17%; decreased K(d), 26%). Cell culture confirmed these results, because 10(-5) and 10(-7) mol/L of CPA promoted an Increase in [3H]RX821002 binding of WKY (53%) and SHR cells (48%), respectively. DPCPX, an AIR antagonist, was used to block the modulatory effect promoted by CPA with respect to Adr2R binding. In conclusion, our study shows for the first time an interaction between A(1R) that increases the binding of Adr2R within specific subnuclei of the NTS. This may be important In understanding the complex autonomic response induced by adenosine within the NTS. In addition, changes in interactions between receptors might be relevant to understanding the development of hypertension. (Hypertens Res 2008; 31: 2177-2186)
Resumo:
Recently, genetically encoded optical indicators have emerged as noninvasive tools of high spatial and temporal resolution utilized to monitor the activity of individual neurons and specific neuronal populations. The increasing number of new optogenetic indicators, together with the absence of comparisons under identical conditions, has generated difficulty in choosing the most appropriate protein, depending on the experimental design. Therefore, the purpose of our study was to compare three recently developed reporter proteins: the calcium indicators GCaMP3 and R-GECO1, and the voltage indicator VSFP butterfly1.2. These probes were expressed in hippocampal neurons in culture, which were subjected to patchclamp recordings and optical imaging. The three groups (each one expressing a protein) exhibited similar values of membrane potential (in mV, GCaMP3: -56 ±8.0, R-GECO1: -57 ±2.5; VSFP: -60 ±3.9, p = 0.86); however, the group of neurons expressing VSFP showed a lower average of input resistance than the other groups (in Mohms, GCaMP3: 161 ±18.3; GECO1-R: 128 ±15.3; VSFP: 94 ±14.0, p = 0.02). Each neuron was submitted to current injections at different frequencies (10 Hz, 5 Hz, 3 Hz, 1.5 Hz, and 0.7 Hz) and their fluorescence responses were recorded in time. In our study, only 26.7% (4/15) of the neurons expressing VSFP showed detectable fluorescence signal in response to action potentials (APs). The average signal-to-noise ratio (SNR) obtained in response to five spikes (at 10 Hz) was small (1.3 ± 0.21), however the rapid kinetics of the VSFP allowed discrimination of APs as individual peaks, with detection of 53% of the evoked APs. Frequencies below 5 Hz and subthreshold signals were undetectable due to high noise. On the other hand, calcium indicators showed the greatest change in fluorescence following the same protocol (five APs at 10 Hz). Among the GCaMP3 expressing neurons, 80% (8/10) exhibited signal, with an average SNR value of 21 ±6.69 (soma), while for the R-GECO1 neurons, 50% (2/4) of the neurons had signal, with a mean SNR value of 52 ±19.7 (soma). For protocols at 10 Hz, 54% of the evoked APs were detected with GCaMP3 and 85% with R-GECO1. APs were detectable in all the analyzed frequencies and fluorescence signals were detected from subthreshold depolarizations as well. Because GCaMP3 is the most likely to yield fluorescence signal and with high SNR, some experiments were performed only with this probe. We demonstrate that GCaMP3 is effective in detecting synaptic inputs (involving Ca2+ influx), with high spatial and temporal resolution. Differences were also observed between the SNR values resulting from evoked APs, compared to spontaneous APs. In recordings of groups of cells, GCaMP3 showed clear discrimination between activated and silent cells, and reveals itself as a potential tool in studies of neuronal synchronization. Thus, our results indicate that the presently available calcium indicators allow detailed studies on neuronal communication, ranging from individual dendritic spines to the investigation of events of synchrony in neuronal networks genetically defined. In contrast, studies employing VSFPs represent a promising technology for monitoring neural activity and, although still to be improved, they may become more appropriate than calcium indicators, since neurons work on a time scale faster than events of calcium may foresee
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Human genetics has been experiencing a wave of genetic discoveries thanks to the development of several technologies, such as genome-wide association studies (GWAS), whole-exome sequencing, and whole genome sequencing. Despite the massive genetic discoveries of new variants associated with human diseases, several key challenges emerge following the genetic discovery. GWAS is known to be good at identifying the locus associated with the patient phenotype. However, the actually causal variants responsible for the phenotype are often elusive. Another challenge in human genetics is that even the causal mutations are already known, the underlying biological effect might remain largely ambiguous. Functional evaluation plays a key role to solve these key challenges in human genetics both to identify causal variants responsible for the phenotype, and to further develop the biological insights from the disease-causing mutations.
We adopted various methods to characterize the effects of variants identified in human genetic studies, including patient genetic and phenotypic data, RNA chemistry, molecular biology, virology, and multi-electrode array and primary neuronal culture systems. Chapter 1 is a broader introduction for the motivation and challenges for functional evaluation in human genetic studies, and the background of several genetics discoveries, such as hepatitis C treatment response, in which we performed functional characterization.
Chapter 2 focuses on the characterization of causal variants following the GWAS study for hepatitis C treatment response. We characterized a non-coding SNP (rs4803217) of IL28B (IFNL3) in high linkage disequilibrium (LD) with the discovery SNP identified in the GWAS. In this chapter, we used inter-disciplinary approaches to characterize rs4803217 on RNA structure, disease association, and protein translation.
Chapter 3 describes another avenue of functional characterization following GWAS focusing on the novel transcripts and proteins identified near the IL28B (IFNL3) locus. It has been recently speculated that this novel protein, which was named IFNL4, may affect the HCV treatment response and clearance. In this chapter, we used molecular biology, virology, and patient genetic and phenotypic data to further characterize and understand the biology of IFNL4. The efforts in chapter 2 and 3 provided new insights to the candidate causal variant(s) responsible for the GWAS for HCV treatment response, however, more evidence is still required to make claims for the exact causal roles of these variants for the GWAS association.
Chapter 4 aims to characterize a mutation already known to cause a disease (seizure) in a mouse model. We demonstrate the potential use of multi-electrode array (MEA) system for the functional characterization and drug testing on mutations found in neurological diseases, such as seizure. Functional characterization in neurological diseases is relatively challenging and available systematic tools are relatively limited. This chapter shows an exploratory research and example to establish a system for the broader use for functional characterization and translational opportunities for mutations found in neurological diseases.
Overall, this dissertation spans a range of challenges of functional evaluations in human genetics. It is expected that the functional characterization to understand human mutations will become more central in human genetics, because there are still many biological questions remaining to be answered after the explosion of human genetic discoveries. The recent advance in several technologies, including genome editing and pluripotent stem cells, is also expected to make new tools available for functional studies in human diseases.
Resumo:
Trisomy 21 (Down syndrome) is associated with a high incidence of Alzheimer disease and with deficits in cholinergic function in humans. We used the trisomy 16 (Ts16) mouse model for Down syndrome to identify the cellular basis for the cholinergic dysfunction. Cholinergic neurons and cerebral cortical astroglia, obtained separately from Ts16 mouse fetuses and their euploid littermates, were cultured in various combinations. Choline acetyltransferase activity and cholinergic neuron number were both depressed in cultures in which both neurons and glia were derived from Ts16 fetuses. Cholinergic function of normal neurons was significantly down-regulated by coculture with Ts16 glia. Conversely, neurons from Ts16 animals could express normal cholinergic function when grown with normal glia. These observations indicate that astroglia may contribute strongly to the abnormal cholinergic function in the mouse Ts16 model for Down syndrome. The Ts16 glia could lack a cholinergic supporting factor present in normal glia or contain a factor that down-regulates cholinergic function.
Resumo:
A morphological and cell culture study from nasal mucosa of dogs was performed in order to establish a protocol to obtain a cell population committed to neuronal lineage, as a proposal for the treatment of traumatic and degenerative lesions in these animals, so that in the future these results could be applied to the human species. Twelve mongrel dogs of 60-day aged pregnancy were collected from urban pound dogs in São Paulo. Tissue from cribriform ethmoidal lamina of the fetuses was collected at necropsy under sterile conditions around 1h to 2h postmortem by uterine sections and sections from the fetal regions described above. Isolated cells of this tissue were added in DMEM/F-12 medium under standard conditions of incubation (5% CO², >37ºC). Cell culture based on isolated cells from biopsies of the olfactory epithelium showed rapid growth when cultured for 24 hours, showing phase-bright sphere cells found floating around the fragments, attached on culture flasks. After 20 days, a specific type of cells, predominantly ellipsoids or fusiform cells was characterized in vitro. The indirect immunofluorescence examination showed cells expressing markers of neuronal precursors (GFAP, neurofilament, oligodendrocyte, and III â-tubulin). The cell proliferation index showed Ki67 immunostaining with a trend to label cell groups throughout the apical region, while PCNA immunostaining label predominantly cell groups lying above the basal lamina. The transmission electron microscopy from the olfactory epithelium of dogs revealed cells with electron-dense cytoplasm and preserving the same distribution as those of positive cell staining for PCNA. Metabolic activity was confirmed by presence of euchromatin in the greatest part of cells. All these aspects give subsidies to support the hypothesis about resident progenitor cells among the basal cells of the olfactory epithelium, committed to renewal of these cell populations, especially neurons.
Resumo:
Introduction: The successful integration of stem cells in adult brain has become a central issue in modern neuroscience. In this study we sought to test the hypothesis that survival and neurodifferentiation of mesenchymal stem cells (MSCs) may be dependent upon microenvironmental conditions according to the site of implant in the brain. Methods: MSCs were isolated from adult rats and labeled with enhanced-green fluorescent protein (eGFP) lentivirus. A cell suspension was implanted stereotactically into the brain of 50 young rats, into one neurogenic area (hippocampus), and into another nonneurogenic area (striatum). Animals were sacrificed 6 or 12 weeks after surgery, and brains were stained for mature neuronal markers. Cells coexpressing NeuN (neuronal specific nuclear protein) and GFP (green fluorescent protein) were counted stereologically at both targets. Results: The isolated cell population was able to generate neurons positive for microtubule-associated protein 2 (MAP2), neuronal-specific nuclear protein (NeuN), and neurofilament 200 (NF200) in vitro. Electrophysiology confirmed expression of voltage-gated ionic channels. Once implanted into the hippocampus, cells survived for up to 12 weeks, migrated away from the graft, and gave rise to mature neurons able to synthesize neurotransmitters. By contrast, massive cell degeneration was seen in the striatum, with no significant migration. Induction of neuronal differentiation with increased cyclic adenosine monophosphate in the culture medium before implantation favored differentiation in vivo. Conclusions: Our data demonstrated that survival and differentiation of MSCs is strongly dependent upon a permissive microenvironment. Identification of the pro-neurogenic factors present in the hippocampus could subsequently allow for the integration of stem cells into nonpermissive areas of the central nervous system.
Resumo:
Guttiferone-A (GA) is a natural occurring polyisoprenylated benzophenone with several reported pharmacological actions. We have assessed the protective action of GA on iron-induced neuronal cell damage by employing the PC12 cell line and primary culture of rat cortical neurons (PCRCN). A strong protection by GA, assessed by the 2,3-bis(2-methoxy-4-nitro-5-sulfophenyl)-2H-tetrazolium-5-carbox-anilide (XTT) assay, was revealed, with IC(50) values <1 mu M. GA also inhibited Fe(3+)-ascorbate reduction, iron-induced oxidative degradation of 2-deoxiribose, and iron-induced lipid peroxidation in rat brain homogenate, as well as stimulated oxygen consumption by Fe(2+) autoxidation. Absorption spectra and cyclic voltammograms of GA Fe(2+)/Fe(3+) complexes suggest the formation of a transient charge transfer complex between Fe(2+) and GA, accelerating Fe(2+) oxidation. The more stable Fe(3+) complex with GA would be unable to participate in Fenton-Haber Weiss-type reactions and the propagation phase of lipid peroxidation. The results show a potential of GA against neuronal diseases associated with iron-induced oxidative stress.