974 resultados para neurofunctional reorganization
Resumo:
Le maintien de performances cognitives optimales au cours du vieillissement a été associé à des changements adaptatifs au niveau de l’activité cérébrale relative à diverses habiletés qui tendent à décliner avec l’âge. Peu d’études ont toutefois évalué cette réorganisation neurofonctionnelle dans le cadre des habiletés de communication, notamment en ce qui concerne le langage expressif. Or, considérant que plusieurs composantes langagières demeurent généralement intègres chez les aînés, il s’avère nécessaire d’explorer davantage les mécanismes cérébraux sous-jacents afin de mieux cerner les déterminants du vieillissement cognitif réussi. L’objectif de la présente thèse est d’examiner en détail les effets de l’âge sur les patrons d’activations et les interactions fonctionnelles entre les substrats neuraux contribuant aux habiletés de communication expressive. Deux études en neuroimagerie fonctionnelle, ayant recours à des approches méthodologiques distinctes, ont ainsi été menées à l’aide d’un paradigme mixte novateur et d’une tâche auto-rythmée d’évocation lexicale sémantique et orthographique, effectuée par des participants jeunes et âgés présentant plusieurs années de scolarisation. S’intéressant spécifiquement aux patrons d’activations associés à un rendement élevé à cette tâche, la première étude révèle que le maintien des habiletés d’évocation lexicale lors du vieillissement s’accompagne de changements neurofonctionnels superficiels chez les adultes âgés performants. Par contre, la seconde étude indique que les interactions fonctionnelles entre les régions corticales contribuant aux productions lexicales déclinent considérablement avec l’âge, sans qu’il y ait toutefois d’impact au plan comportemental. Cet effet du vieillissement sur l’intégration fonctionnelle du réseau de l’évocation sémantique et orthographique est aussi exacerbé par la difficulté de la tâche, ce qui s’exprime par des perturbations locales de la connectivité fonctionnelle. Somme toute, cette thèse démontre qu’une réorganisation neurofonctionnelle afin de maintenir les habiletés d’évocation lexicale au cours du vieillissement s’avère superflue chez les adultes âgés instruits et performants, et ce, malgré une diminution des interactions fonctionnelles au sein des réseaux corticaux sous-jacents. Ces résultats reflètent possiblement une perte d’efficience neurale avec l’âge, toutefois insuffisante pour avoir un impact comportemental chez des individus bénéficiant de facteurs de protection susceptibles de favoriser le vieillissement réussi, ce qui est discuté à la lumière du concept de réserve cognitive.
Resumo:
The immune system has to recognize and destroy abnormal or infected cells to maintain homeostasis. Natural killer (NK) cells directly recognize and kill transformed or virus-infected cells without prior sensitization. We have studied both virus-infected and tumor cells in order to identify the target structures involved in triggering NK activity. Mouse/human cell hybrids containing various human chromosomes were used as targets. The human chromosome responsible for activating NK cell killing was identified to chromosome number 6. The results suggest that activated NK cells recognize ligands that are encoded on human chromosome 6. We showed that the ligand on the target cell side was intercellular adhesion molecule 2 (ICAM-2). There was no difference in the level of expression of ICAM-2, however, but a drastic difference was seen in the distribution of the molecule: ICAM-2 was evenly distributed on the surface of the NK-resistant cells, but almost totally redistributed to the tip of uropods, bud-like extensions, which were absent from the parental cells. Interestingly, the gene coding for cytoskeletal linker protein ezrin has been localized to human chromosome 6, and there was a colocalization of ezrin and ICAM-2 in the uropods. Furthermore, the transfected human ezrin into NK cell-resistant cells induced uropod formation, ICAM-2 and ezrin redistribution to newly formed uropods, and sensitized target cells to NK cell killing. These data reveal a novel form of NK cell recognition: target structures are already present on normal cells; they become detectable only after abnormal redistribution into hot spots on the target cell membrane. NK cells are central players in the defence against virus infections. They inhibit the spread of infection, allowing time for specific immune responses to develop. The virus-proteins that directly activate human NK cell killing are largely unknown. We studied the sensitivity of virus-specific early proteins of Semliki Forest virus (SFV) to NK killing. The viral non-structural proteins (nsP1-4) translated early in the virus cycle were transfected in NK-resistant cells. Viral early gene nsP1 alone efficiently sensitized target cells to NK activity, and the tight membrane association of nsP1 seems to be critical in the triggering of NK killing. NsP1 protein colocalized with (redistributed) ezrin in filopodia-like structures to which the NK cells were bound. The results suggest that also in viral infections NK cells react to rapid changes in membrane topography. Based on the results of this thesis, a new model of target cell recognition of NK cells can be suggested: reorganization of the cytoskeleton induces alterations in cell surface topography, and this new pattern of surface molecules is recognized as "altered-self".
Resumo:
Two copper-containing compounds [Cu(3)(mu(3)-OH)(2)-(H(2)O)(2){(SO(3))-C(6)H(3)-(COO)(2)}(CH(3)COO)] , I, and [Cu(5)(mu(3)-OH)(2)(H(2)O)(6){(NO(2))-C(6)H(3)-(COO)(2)}(4)]center dot 5H(2)O, II, were prepared using sulphoisophthalic and nitroisophthalic acids. The removal of the coordinated water molecules in the compounds was investigated using in situ single crystal to single crystal (SCSC) transformation studies, temperature-dependent powder X-ray diffraction (PXRD), and thermogravimetric analysis (TGA). The efficacy of SCSC transformation studies were established by the observation of dimensionality cross-over from a two-dimensional (I) to a three-dimensional structure, Cu(6)(mu(3)-OH)(4){(SO(3))-C(6)H(3)-(COO)(2)}(2)(CH(3)COO)(2), Ia, during the removal of the coordinated water molecules. Compound H exhibited a structural reorganization forming Cu(5)(mu(2)-OH)(2){(NO(2))C(6)H(3)-(COO)(2))(4)], Ha, possessing trimeric (Cu(3)O(12)) and dimeric (Cu(2)O(8)) copper clusters. The PXRD studies indicate that the three-dimensional structure (Ia) is transient and unstable, reverting back to the more stable two-dimensional structure (I) on cooling to room temperature. Compound Ha appears to be more stable at room temperature. The rehydration/dehydration studies using a modified TGA setup suggest complete rehydration of the water molecules, indicating that the water molecules in both compounds are labile. A possible model for the observed changes in the structures has been proposed. Magnetic studies indicate changes in the exchanges between the copper centers in Ha, whereas no such behavior was observed in Ia.
Resumo:
In this paper, based on the temporal and spatial locality characteristics of memory accesses in multicores, we propose a re-organization of the existing single large row buffer in a DRAM bank into multiple smaller row-buffers. The proposed configuration helps improve the row hit rates and also brings down the energy required for row-activations. The major contribution of this work is proposing such a reorganization without requiring any significant changes to the existing widely accepted DRAM specifications. Our proposed reorganization improves performance by 35.8%, 14.5% and 21.6% in quad, eight and sixteen core workloads along with a 42%, 28% and 31% reduction in DRAM energy. Additionally, we introduce a Need Based Allocation scheme for buffer management that shows additional performance improvement.
Resumo:
Dendrimers are highly branched polymeric nanoparticles whose structure and topology, largely, have determined their efficacy in a wide range of studies performed so far. An area of immense interest is their potential as drug and gene delivery vectors. Realizing this potential, depending on the nature of cell surface-dendrimer interactions, here we report controlled model membrane penetration and reorganization, using a model supported lipid bilayer and poly(ether imine) (PETIM) dendrimers of two generations. By systematically varying the areal density of the lipid bilayers, we provide a microscopic insight, through a combination of high resolution scattering, atomic force microscopy and atomistic molecular dynamics simulations, into the mechanism of PETIM dendrimer membrane penetration, pore formation and membrane re-organization induced by such interactions. Our work represents the first systematic observation of a regular barrel-like membrane spanning pore formation by dendrimers, tunable through lipid bilayer packing, without membrane disruption.
Resumo:
In this paper, sensing coverage by wireless camera-embedded sensor networks (WCSNs), a class of directional sensors is studied. The proposed work facilitates the autonomous tuning of orientation parameters and displacement of camera-sensor nodes in the bounded field of interest (FoI), where the network coverage in terms of every point in the FoI is important. The proposed work is first of its kind to study the problem of maximizing coverage of randomly deployed mobile WCSNs which exploits their mobility. We propose an algorithm uncovered region exploration algorithm (UREA-CS) that can be executed in centralized and distributed modes. Further, the work is extended for two special scenarios: 1) to suit autonomous combing operations after initial random WCSN deployments and 2) to improve the network coverage with occlusions in the FoI. The extensive simulation results show that the performance of UREA-CS is consistent, robust, and versatile to achieve maximum coverage, both in centralized and distributed modes. The centralized and distributed modes are further analyzed with respect to the computational and communicational overheads.
Resumo:
Effects of SiO2 encapsulation and rapid thermal annealing on the optical properties of a GaNAs/GaAs single quantum well (SQW) are studied by low-temperature photoluminescence (LTPL). After annealing at 800degreesC for 30s, a blueshift of the LTPL peak energy for the SiO2-capped region is 25meV and that for the bare region is 0.8meV. The results can attribute to the nitrogen reorganization in the GaNAs/GaAs SQW. It is also shown that the nitrogen reorganization can be obviously enhanced by SiO2 cap-layer. A simple model is used to describe the SiO2-enhanced blueshift of the LTPL peak energy. The estimated activation energy of the N atomic reorganization for the samples annealing with and without SiO2 cap-layer are 2.9eV and 3.1eV, respectively.
Resumo:
Effects of SiO2, encapsulation and rapid thermal annealing (RTA) on the optical properties of GaNAs/GaAs single quantum well (SQW) were studied by low temperature photoluminescence (PL). A blueshift of the PL peak energy for both the SiO2-capped region and the bare region was observed. The results were attributed to the nitrogen reorganization in the GaNAs/GaAs SQW. It was also shown that the nitrogen reorganization was obviously enhanced by SiO2 cap-layer. A simple model [1] was used to describe the SiO2-enhanced blueshift of the low temperature PL peak energy.
Resumo:
In the present work a nonmonotonic dependence of standard rate constant (k(0)) on reorganization energy (lambda) was discovered qualitatively from electron transfer (Marcus-Hush-Levich) theory for heterogeneous electron transfer processes on electrode surface. It was found that the nonmonotonic dependence of k(0) on lambda is another result, besides the disappearance of the famous Marcus inverted region, coming from the continuum of electronic states in electrode: with the increase of lambda, the states for both Process I and Process II ET processes all vary from nonadiabatic to adiabatic state continuously, and the lambda dependence of k(0) for Process I is monotonic thoroughly, while for Process II on electrode surface the lambda dependence of k(0) could show a nonmonotonicity.