940 resultados para neural-control


Relevância:

100.00% 100.00%

Publicador:

Resumo:

1) A large body of behavioral data conceming animal and human gaits and gait transitions is simulated as emergent properties of a central pattern generator (CPG) model. The CPG model incorporates neurons obeying Hodgkin-Huxley type dynamics that interact via an on-center off-surround anatomy whose excitatory signals operate on a faster time scale than their inhibitory signals. A descending cornmand or arousal signal called a GO signal activates the gaits and controL their transitions. The GO signal and the CPG model are compared with neural data from globus pallidus and spinal cord, among other brain structures. 2) Data from human bimanual finger coordination tasks are simulated in which anti-phase oscillations at low frequencies spontaneously switch to in-phase oscillations at high frequencies, in-phase oscillations can be performed both at low and high frequencies, phase fluctuations occur at the anti-phase in-phase transition, and a "seagull effect" of larger errors occurs at intermediate phases. When driven by environmental patterns with intermediate phase relationships, the model's output exhibits a tendency to slip toward purely in-phase and anti-phase relationships as observed in humans subjects. 3) Quadruped vertebrate gaits, including the amble, the walk, all three pairwise gaits (trot, pace, and gallop) and the pronk are simulated. Rapid gait transitions are simulated in the order--walk, trot, pace, and gallop--that occurs in the cat, along with the observed increase in oscillation frequency. 4) Precise control of quadruped gait switching is achieved in the model by using GO-dependent modulation of the model's inhibitory interactions. This generates a different functional connectivity in a single CPG at different arousal levels. Such task-specific modulation of functional connectivity in neural pattern generators has been experimentally reported in invertebrates. Phase-dependent modulation of reflex gain has been observed in cats. A role for state-dependent modulation is herein predicted to occur in vertebrates for precise control of phase transitions from one gait to another. 5) The primary human gaits (the walk and the run) and elephant gaits (the amble and the walk) are sirnulated. Although these two gaits are qualitatively different, they both have the same limb order and may exhibit oscillation frequencies that overlap. The CPG model simulates the walk and the run by generating oscillations which exhibit the same phase relationships. but qualitatively different waveform shapes, at different GO signal levels. The fraction of each cycle that activity is above threshold quantitatively distinguishes the two gaits, much as the duty cycles of the feet are longer in the walk than in the run. 6) A key model properly concerns the ability of a single model CPG, that obeys a fixed set of opponent processing equations to generate both in-phase and anti-phase oscillations at different arousal levels. Phase transitions from either in-phase to anti-phase oscillations, or from anti-phase to in-phase oscillations, can occur in different parameter ranges, as the GO signal increases.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Renal failure (RF) is associated with an over activation of the sympathetic nervous system. The aim of this thesis was to investigate the hypothesis that as the kidney progresses into RF there is an inappropriate and sustained activation of renal afferent nerves which results in a dysregulation of basal RSNA and reflexly controlled RSNA by the high and low pressure baroreceptors. Baroreflex gain curves for both RSNA and HR were generated in control and RF rats. This study clearly showed a blunted high-pressure baroreflex in RF rats, an impairment which was almost completely corrected by bilateral renal denervation. The integrity of the low-pressure cardiopulmonary receptors to inhibit RSNA was investigated using acute saline volume. Again, a blunted reflex sympatho-inhibition of RSNA was observed, which was corrected by renal denervation. Finally a functional study to examine how the renal excretory response to volume expansion differed in RF was carried out. This study revealed an impairment of the low-pressure baroreflex control of the sympathetic outflow. The result of these studies suggest that cisplatin induced RF initiates a neural signal from within the kidney, which over rides the normal reflex regulation of RSNA by the high and low – pressure baroreceptors and that this impairment in function can be normalised by renal denervation. This raises further questions as to the mechanisms involved in the afferent over activation arising from the diseased kidneys.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The gut-hormone, ghrelin, activates the centrally expressed growth hormone secretagogue 1a (GHS-R1a) receptor, or ghrelin receptor. The ghrelin receptor is a G-protein coupled receptor (GPCR) expressed in several brain regions, including the arcuate nucleus (Arc), lateral hypothalamus (LH), ventral tegmental area (VTA), nucleus accumbens (NAcc) and amygdala. Activation of the GHS-R1a mediates a multitude of biological activities, including release of growth hormone and food intake. The ghrelin signalling system also plays a key role in the hedonic aspects of food intake and activates the dopaminergic mesolimbic circuit involved in reward signalling. Recently, ghrelin has been shown to be involved in mediating a stress response and to mediate stress-induced food reward behaviour via its interaction with the HPA-axis at the level of the anterior pituitary. Here, we focus on the role of the GHS-R1a receptor in reward behaviour, including the motivation to eat, its anxiogenic effects, and its role in impulsive behaviour. We investigate the functional selectivity and pharmacology of GHS-R1a receptor ligands as well as crosstalk of the GHS-R1a receptor with the serotonin 2C (5-HT2C) receptor, which represent another major target in the regulation of eating behaviour, stress-sensitivity and impulse control disorders. We demonstrate, to our knowledge for the first time, the direct impact of GHS-R1a signalling on impulsive responding in a 2-choice serial reaction time task (2CSRTT) and show a role for the 5-HT2C receptor in modulating amphetamine-associated impulsive action. Finally, we investigate differential gene expression patterns in the mesocorticolimbic pathway, specifically in the NAcc and PFC, between innate low- and high-impulsive rats. Together, these findings are poised to have important implications in the development of novel treatment strategies to combat eating disorders, including obesity and binge eating disorders as well as impulse control disorders, including, substance abuse and addiction, attention deficit hyperactivity disorder (ADHD) and mood disorders.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aim of this study was to gain further insight into the role that central dopaminergic pathways play in GH neuroregulation in man. Our experimental hypothesis was based on the possibility that most of the controversies on DA role could be due to the fact that the hypothalamic somatotroph rhythm (HSR) was not taken into account when interpreting the GH responses after pharmacological manipulations on dopaminergic pathways. In 10 normal subjects we monitored the effect of central dopaminergic blockade, achieved with metoclopramide (MCP; 10 mg, i.v. Bolus), on the pattern of spontaneous GH secretion and the GH responses to a GHRH challenge (GRF , 1 µg/kg, i.v. bolus) administered together with MCP or 60 min after this drug was given. The study of HSR was made according to our previous postulate. Our results indicate that MCP administration, either prior to or together with the GHRH bolus, significantly increased GHRH-induced GH release during a refractory HSR phase; but not when the GHRH challenge took place during a spotaneous secretory phase. The strong relationship between pre-GHRH plasma GH values and GHRH-elicited GH peaks was lost when MCP was given. These data indicate that MCP was able to disrupt the intrinsic HSR by inhibiting the hypothalamic release of somatostain (SS). While a main conclusion would be that central DA is a secretagogue for SS secretion, our results also suggest that this role could be dependent on its effects on the adrenergic inputs to SS neurons.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This article aims to apply the concepts associated with artificial neural networks (ANN) in the control of an autonomous robot system that is intended to be used in competitions of robots. The robot was tested in several arbitrary paths in order to verify its effectiveness. The results show that the robot performed the tasks with success. Moreover, in the case of arbitrary paths the ANN control outperforms other methodologies, such as fuzzy logic control (FLC).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, a trajectory tracking control problem for a nonholonomic mobile robot by the integration of a kinematic neural controller (KNC) and a torque neural controller (TNC) is proposed, where both the kinematic and dynamic models contains disturbances. The KNC is a variable structure controller (VSC) based on the sliding mode control theory (SMC), and applied to compensate the kinematic disturbances. The TNC is a inertia-based controller constituted of a dynamic neural controller (DNC) and a robust neural compensator (RNC), and applied to compensate the mobile robot dynamics, and bounded unknown disturbances. Stability analysis with basis on Lyapunov method and simulations results are provided to show the effectiveness of the proposed approach. © 2012 Springer-Verlag.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Recent epidemiological studies report a consistent association between short sleep and incidence of hypertension, as well as short sleep and cardiovascular disease-related mortality. While the association between short sleep and hypertension appears to be stronger in women than men, the mechanisms underlying the relations between sleep deprivation, stress, risks of cardiovascular diseases, and sex remain unclear. We conducted two studies to investigate the underlying neural mechanisms of these relations. In study 1, we examined sympathetic neural and blood pressure responses to experimentally-induced sleep deprivation in men and women. We further investigated the influence of sleep deprivation on cardiovascular reactivity to acute stress. In study 2, we examined the neural and cardiovascular function throughout the ovarian cycle in sleep deprived women. Twenty-eight young healthy subjects (14men and 14 women) were tested twice in study 1, once after normal sleep (NS) and once after 24-h total sleep deprivation (TSD). We measured the blood pressure, heart rate (HR), muscle sympathetic nerve activity (MSNA) and forearm blood flow (FBF) during 10min baseline, 5min of mental stress (MS) and 2 min cold pressor test (CPT). We demonstrated that TSD increased resting arterial blood pressure to a similar extent in both men and women, but MSNA decreased only in men following TSD. This MSNA response was associated with altered baroreflex function in women and divergent testosterone responses to TSD between men and women. Regarding TSD and cardiovascular reactivity, TSD elicited augmented HR reactivity and delayed recovery during both MS and CPT in men and women, and responses between sexes were not statistically different. Fourteen young healthy women participated in study 2. Subjects were tested twice, once during their early follicular (EF) phase after TSD, once during their mid-luteal (ML) phase after TSD. Blood pressure, HR, MSNA, and FBF were recorded during 10min baseline, 5 min MS, and 2 min CPT. We observed an augmented resting supine blood pressure during EF compared to ML in sleep deprived women. In contrast, resting MSNA, as well as cardiovascular responses to stressors, were similar between EF and ML after TSD. In conclusion, we observed sex differences in MSNA responses to TSD that demonstrate reductions of MSNA in men, but not women. TSD elicited augmented HR reactivity and delayed HR recovery to acute stressors similarly in men and women. We also reported an augmented supine blood pressure during EF compared to ML in sleep deprived women. These novel findings provide new and valuable mechanistic insight regarding the complex and poorly understood relations among sleep deprivation, sex, stress, and risk of cardiovascular disease.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The purpose of the work reported here was to investigate the application of neural control to a common industrial process. The chosen problem was the control of a batch distillation. In the first phase towards deployment, a complex software simulation of the process was controlled. Initially, the plant was modelled with a neural emulator. The neural emulator was used to train a neural controller using the backpropagation through time algorithm. A high accuracy was achieved with the emulator after a large number of training epochs. The controller converged more rapidly, but its performance varied more widely over its operating range. However, the controlled system was relatively robust to changes in ambient conditions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Signal processing is an important topic in technological research today. In the areas of nonlinear dynamics search, the endeavor to control or order chaos is an issue that has received increasing attention over the last few years. Increasing interest in neural networks composed of simple processing elements (neurons) has led to widespread use of such networks to control dynamic systems learning. This paper presents backpropagation-based neural network architecture that can be used as a controller to stabilize unsteady periodic orbits. It also presents a neural network-based method for transferring the dynamics among attractors, leading to more efficient system control. The procedure can be applied to every point of the basin, no matter how far away from the attractor they are. Finally, this paper shows how two mixed chaotic signals can be controlled using a backpropagation neural network as a filter to separate and control both signals at the same time. The neural network provides more effective control, overcoming the problems that arise with control feedback methods. Control is more effective because it can be applied to the system at any point, even if it is moving away from the target state, which prevents waiting times. Also control can be applied even if there is little information about the system and remains stable longer even in the presence of random dynamic noise.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The main objective of a steel strip rolling process is to produce high quality steel at a desired thickness.  Thickness reduction is the result of the speed difference between the incoming and the outgoing steel strip and the application of the large normal forces via the backup and the work rolls.  Gauge control of a cold rolled steel strip is achieved using the gaugemeter principle that works adequately for the input gauge changes and the strip hardness changes.  However, the compensation of some factors is problematic, for example, eccentricity of the backup rolls.  This cyclic eccentricity effect causes a gauge deviation, but more importantly, a signal is passed to the gap position control so to increase the eccentricity deviation.  Consequently, the required high product tolerances are severely limited by the presence of the roll eccentricity effects.
In this paper a direct model reference adaptive control (MRAC) scheme with dynamically constructed neural controller was used.  The aim here is to find the simplest controller structure capable of achieving an optimal performance.  The stability of the adaptive neural control scheme (i.e. the requirement of persistency of excitation and bounded learning rates) is addressed by using as the inputs to the reference model the plant's state variables.  In such a case, excitation is due to actual plant signals (states) affected by plant disturbances and noise.  In addition, a reference model in the form of a filter with a desired transfer function using Modulus Optimum design was used to ensure variance in the desired dynamic characteristics of the system.  The gradually decreasing learning rate employed by the neural controller in this paper is aimed at eliminating controller instability resulting from over-aggressive control.  The moving target problem (i.e. the difficulty of global neural networks to perfrom several separate computational tasks in closed -loop control) is addressed by the localized architecture of the controller.  The above control scheme and learning algorithm offers a method for automatic discovery of an efficient controller.
The resulting neural controller produces an excellent disturbance rejection in both cases of eccentricity and hardness disturbances, reducing the gauge deviation due to eccentricity disturbance from 33.36% to 4.57% on average, and the gauge deviation due to hardness disturbance from 12.59% to 2.08%.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

LOPES, Jose Soares Batista et al. Application of multivariable control using artificial neural networks in a debutanizer distillation column.In: INTERNATIONAL CONGRESS OF MECHANICAL ENGINEERING - COBEM, 19, 5-9 nov. 2007, Brasilia. Anais... Brasilia, 2007