968 resultados para neural modeling


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper describes a neural model of speech acquisition and production that accounts for a wide range of acoustic, kinematic, and neuroimaging data concerning the control of speech movements. The model is a neural network whose components correspond to regions of the cerebral cortex and cerebellum, including premotor, motor, auditory, and somatosensory cortical areas. Computer simulations of the model verify its ability to account for compensation to lip and jaw perturbations during speech. Specific anatomical locations of the model's components are estimated, and these estimates are used to simulate fMRI experiments of simple syllable production with and without jaw perturbations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the identification of complex dynamic systems using fuzzy neural networks, one of the main issues is the curse of dimensionality, which makes it difficult to retain a large number of system inputs or to consider a large number of fuzzy sets. Moreover, due to the correlations, not all possible network inputs or regression vectors in the network are necessary and adding them simply increases the model complexity and deteriorates the network generalisation performance. In this paper, the problem is solved by first proposing a fast algorithm for selection of network terms, and then introducing a refinement procedure to tackle the correlation issue. Simulation results show the efficacy of the method.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The issue of how children learn the meaning of words is fundamental to developmental psychology. The recent attempts to develop or evolve efficient communication protocols among interacting robots or Virtual agents have brought that issue to a central place in more applied research fields, such as computational linguistics and neural networks, as well. An attractive approach to learning an object-word mapping is the so-called cross-situational learning. This learning scenario is based on the intuitive notion that a learner can determine the meaning of a word by finding something in common across all observed uses of that word. Here we show how the deterministic Neural Modeling Fields (NMF) categorization mechanism can be used by the learner as an efficient algorithm to infer the correct object-word mapping. To achieve that we first reduce the original on-line learning problem to a batch learning problem where the inputs to the NMF mechanism are all possible object-word associations that Could be inferred from the cross-situational learning scenario. Since many of those associations are incorrect, they are considered as clutter or noise and discarded automatically by a clutter detector model included in our NMF implementation. With these two key ingredients - batch learning and clutter detection - the NMF mechanism was capable to infer perfectly the correct object-word mapping. (C) 2009 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This document corresponds to the tutorial on realistic neural modeling given by David Beeman at WAM-BAMM*05, the first annual meeting of the World Association of Modelers (WAM) Biologically Accurate Modeling Meeting (BAMM) on March 31, 2005 in San Antonio, TX. Part I - Introduction to Realistic Neural Modeling for the Beginner: This is a general overview and introduction to compartmental cell modeling and realistic network simulation for the beginner. Although examples are drawn from GENESIS simulations, the tutorial emphasizes the general modeling approach, rather than the details of using any particular simulator. Part II - Getting Started with Modeling Using GENESIS: This builds upon the background of Part I to describe some details of how this approach is used to construct cell and network simulations in GENESIS. It serves as an introduction and roadmap to the extended hands-on GENESIS Modeling Tutorial.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The photo-oxidation of acid orange 52 dye was performed in the presence of H2O2, utilizing UV light, aiming the discoloration process modeling and the process variable influence characterization. The discoloration process was modeled by the use of feedforward neural network. Each sample was characterized by five independent variables (dye concentration, pH, hydrogen peroxide volume, temperature and time of operation) and a dependent variable (absorbance). The neural model has also provided, through Garson Partition coefficients and the Pertubation method, the independent variable influence order determination. The results indicated that the time of operation was the predominant variable and reaction mean temperature was the lesser influent variable. The neural model obtained presented coefficients of correlation on the order 0.98, for sets of trainability, validation and testing, indicating the power of prediction of the model and its character of generalization. (c) 2007 Elsevier B.V. All rights reserved.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Lewis proposes "reconceptualization" (p. 1) of how to link the psychology and neurobiology of emotion and cognitive-emotional interactions. His main proposed themes have actually been actively and quantitatively developed in the neural modeling literature for over thirty years. This commentary summarizes some of these themes and points to areas of particularly active research in this area.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

A neural model is presented of how cortical areas V1, V2, and V4 interact to convert a textured 2D image into a representation of curved 3D shape. Two basic problems are solved to achieve this: (1) Patterns of spatially discrete 2D texture elements are transformed into a spatially smooth surface representation of 3D shape. (2) Changes in the statistical properties of texture elements across space induce the perceived 3D shape of this surface representation. This is achieved in the model through multiple-scale filtering of a 2D image, followed by a cooperative-competitive grouping network that coherently binds texture elements into boundary webs at the appropriate depths using a scale-to-depth map and a subsequent depth competition stage. These boundary webs then gate filling-in of surface lightness signals in order to form a smooth 3D surface percept. The model quantitatively simulates challenging psychophysical data about perception of prolate ellipsoids (Todd and Akerstrom, 1987, J. Exp. Psych., 13, 242). In particular, the model represents a high degree of 3D curvature for a certain class of images, all of whose texture elements have the same degree of optical compression, in accordance with percepts of human observers. Simulations of 3D percepts of an elliptical cylinder, a slanted plane, and a photo of a golf ball are also presented.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The relationship between thought and language and, in particular, the issue of whether and how language influences thought is still a matter of fierce debate. Here we consider a discrimination task scenario to study language acquisition in which an agent receives linguistic input from an external teacher, in addition to sensory stimuli from the objects that exemplify the overlapping categories that make up the environment. Sensory and linguistic input signals are fused using the Neural Modelling Fields (NMF) categorization algorithm. We find that the agent with language is capable of differentiating object features that it could not distinguish without language. In this sense, the linguistic stimuli prompt the agent to redefine and refine the discrimination capacity of its sensory channels. (C) 2007 Elsevier Ltd. All rights reserved.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The means through which the nervous system perceives its environment is one of the most fascinating questions in contemporary science. Our endeavors to comprehend the principles of neural science provide an instance of how biological processes may inspire novel methods in mathematical modeling and engineering. The application ofmathematical models towards understanding neural signals and systems represents a vibrant field of research that has spanned over half a century. During this period, multiple approaches to neuronal modeling have been adopted, and each approach is adept at elucidating a specific aspect of nervous system function. Thus while bio-physical models have strived to comprehend the dynamics of actual physical processes occurring within a nerve cell, the phenomenological approach has conceived models that relate the ionic properties of nerve cells to transitions in neural activity. Further-more, the field of neural networks has endeavored to explore how distributed parallel processing systems may become capable of storing memory. Through this project, we strive to explore how some of the insights gained from biophysical neuronal modeling may be incorporated within the field of neural net-works. We specifically study the capabilities of a simple neural model, the Resonate-and-Fire (RAF) neuron, whose derivation is inspired by biophysical neural modeling. While reflecting further biological plausibility, the RAF neuron is also analytically tractable, and thus may be implemented within neural networks. In the following thesis, we provide a brief overview of the different approaches that have been adopted towards comprehending the properties of nerve cells, along with the framework under which our specific neuron model relates to the field of neuronal modeling. Subsequently, we explore some of the time-dependent neurocomputational capabilities of the RAF neuron, and we utilize the model to classify logic gates, and solve the classic XOR problem. Finally we explore how the resonate-and-fire neuron may be implemented within neural networks, and how such a network could be adapted through the temporal backpropagation algorithm.