856 resultados para networks text analysis text network graph Gephi network measures shuffed text Zipf Heap Python


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In numerosi campi scientici l'analisi di network complessi ha portato molte recenti scoperte: in questa tesi abbiamo sperimentato questo approccio sul linguaggio umano, in particolare quello scritto, dove le parole non interagiscono in modo casuale. Abbiamo quindi inizialmente presentato misure capaci di estrapolare importanti strutture topologiche dai newtork linguistici(Degree, Strength, Entropia, . . .) ed esaminato il software usato per rappresentare e visualizzare i grafi (Gephi). In seguito abbiamo analizzato le differenti proprietà statistiche di uno stesso testo in varie sue forme (shuffolato, senza stopwords e senza parole con bassa frequenza): il nostro database contiene cinque libri di cinque autori vissuti nel XIX secolo. Abbiamo infine mostrato come certe misure siano importanti per distinguere un testo reale dalle sue versioni modificate e perché la distribuzione del Degree di un testo normale e di uno shuffolato abbiano lo stesso andamento. Questi risultati potranno essere utili nella sempre più attiva analisi di fenomeni linguistici come l'autorship attribution e il riconoscimento di testi shuffolati.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Aberrant behavior of biological signaling pathways has been implicated in diseases such as cancers. Therapies have been developed to target proteins in these networks in the hope of curing the illness or bringing about remission. However, identifying targets for drug inhibition that exhibit good therapeutic index has proven to be challenging since signaling pathways have a large number of components and many interconnections such as feedback, crosstalk, and divergence. Unfortunately, some characteristics of these pathways such as redundancy, feedback, and drug resistance reduce the efficacy of single drug target therapy and necessitate the employment of more than one drug to target multiple nodes in the system. However, choosing multiple targets with high therapeutic index poses more challenges since the combinatorial search space could be huge. To cope with the complexity of these systems, computational tools such as ordinary differential equations have been used to successfully model some of these pathways. Regrettably, for building these models, experimentally-measured initial concentrations of the components and rates of reactions are needed which are difficult to obtain, and in very large networks, they may not be available at the moment. Fortunately, there exist other modeling tools, though not as powerful as ordinary differential equations, which do not need the rates and initial conditions to model signaling pathways. Petri net and graph theory are among these tools. In this thesis, we introduce a methodology based on Petri net siphon analysis and graph network centrality measures for identifying prospective targets for single and multiple drug therapies. In this methodology, first, potential targets are identified in the Petri net model of a signaling pathway using siphon analysis. Then, the graph-theoretic centrality measures are employed to prioritize the candidate targets. Also, an algorithm is developed to check whether the candidate targets are able to disable the intended outputs in the graph model of the system or not. We implement structural and dynamical models of ErbB1-Ras-MAPK pathways and use them to assess and evaluate this methodology. The identified drug-targets, single and multiple, correspond to clinically relevant drugs. Overall, the results suggest that this methodology, using siphons and centrality measures, shows promise in identifying and ranking drugs. Since this methodology only uses the structural information of the signaling pathways and does not need initial conditions and dynamical rates, it can be utilized in larger networks.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Simulation Automation Framework for Experiments (SAFE) streamlines the de- sign and execution of experiments with the ns-3 network simulator. SAFE ensures that best practices are followed throughout the workflow a network simulation study, guaranteeing that results are both credible and reproducible by third parties. Data analysis is a crucial part of this workflow, where mistakes are often made. Even when appearing in highly regarded venues, scientific graphics in numerous network simulation publications fail to include graphic titles, units, legends, and confidence intervals. After studying the literature in network simulation methodology and in- formation graphics visualization, I developed a visualization component for SAFE to help users avoid these errors in their scientific workflow. The functionality of this new component includes support for interactive visualization through a web-based interface and for the generation of high-quality, static plots that can be included in publications. The overarching goal of my contribution is to help users create graphics that follow best practices in visualization and thereby succeed in conveying the right information about simulation results.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The developmental processes and functions of an organism are controlled by the genes and the proteins that are derived from these genes. The identification of key genes and the reconstruction of gene networks can provide a model to help us understand the regulatory mechanisms for the initiation and progression of biological processes or functional abnormalities (e.g. diseases) in living organisms. In this dissertation, I have developed statistical methods to identify the genes and transcription factors (TFs) involved in biological processes, constructed their regulatory networks, and also evaluated some existing association methods to find robust methods for coexpression analyses. Two kinds of data sets were used for this work: genotype data and gene expression microarray data. On the basis of these data sets, this dissertation has two major parts, together forming six chapters. The first part deals with developing association methods for rare variants using genotype data (chapter 4 and 5). The second part deals with developing and/or evaluating statistical methods to identify genes and TFs involved in biological processes, and construction of their regulatory networks using gene expression data (chapter 2, 3, and 6). For the first part, I have developed two methods to find the groupwise association of rare variants with given diseases or traits. The first method is based on kernel machine learning and can be applied to both quantitative as well as qualitative traits. Simulation results showed that the proposed method has improved power over the existing weighted sum method (WS) in most settings. The second method uses multiple phenotypes to select a few top significant genes. It then finds the association of each gene with each phenotype while controlling the population stratification by adjusting the data for ancestry using principal components. This method was applied to GAW 17 data and was able to find several disease risk genes. For the second part, I have worked on three problems. First problem involved evaluation of eight gene association methods. A very comprehensive comparison of these methods with further analysis clearly demonstrates the distinct and common performance of these eight gene association methods. For the second problem, an algorithm named the bottom-up graphical Gaussian model was developed to identify the TFs that regulate pathway genes and reconstruct their hierarchical regulatory networks. This algorithm has produced very significant results and it is the first report to produce such hierarchical networks for these pathways. The third problem dealt with developing another algorithm called the top-down graphical Gaussian model that identifies the network governed by a specific TF. The network produced by the algorithm is proven to be of very high accuracy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Esta tesis estudia la evolución estructural de conjuntos de neuronas como la capacidad de auto-organización desde conjuntos de neuronas separadas hasta que forman una red (clusterizada) compleja. Esta tesis contribuye con el diseño e implementación de un algoritmo no supervisado de segmentación basado en grafos con un coste computacional muy bajo. Este algoritmo proporciona de forma automática la estructura completa de la red a partir de imágenes de cultivos neuronales tomadas con microscopios de fase con una resolución muy alta. La estructura de la red es representada mediante un objeto matemático (matriz) cuyos nodos representan a las neuronas o grupos de neuronas y los enlaces son las conexiones reconstruidas entre ellos. Este algoritmo extrae también otras medidas morfológicas importantes que caracterizan a las neuronas y a las neuritas. A diferencia de otros algoritmos hasta el momento, que necesitan de fluorescencia y técnicas inmunocitoquímicas, el algoritmo propuesto permite el estudio longitudinal de forma no invasiva posibilitando el estudio durante la formación de un cultivo. Además, esta tesis, estudia de forma sistemática un grupo de variables topológicas que garantizan la posibilidad de cuantificar e investigar la progresión de las características principales durante el proceso de auto-organización del cultivo. Nuestros resultados muestran la existencia de un estado concreto correspondiente a redes con configuracin small-world y la emergencia de propiedades a micro- y meso-escala de la estructura de la red. Finalmente, identificamos los procesos físicos principales que guían las transformaciones morfológicas de los cultivos y proponemos un modelo de crecimiento de red que reproduce el comportamiento cuantitativamente de las observaciones experimentales. ABSTRACT The thesis analyzes the morphological evolution of assemblies of living neurons, as they self-organize from collections of separated cells into elaborated, clustered, networks. In particular, it contributes with the design and implementation of a graph-based unsupervised segmentation algorithm, having an associated very low computational cost. The processing automatically retrieves the whole network structure from large scale phase-contrast images taken at high resolution throughout the entire life of a cultured neuronal network. The network structure is represented by a mathematical object (a matrix) in which nodes are identified neurons or neurons clusters, and links are the reconstructed connections between them. The algorithm is also able to extract any other relevant morphological information characterizing neurons and neurites. More importantly, and at variance with other segmentation methods that require fluorescence imaging from immunocyto- chemistry techniques, our measures are non invasive and entitle us to carry out a fully longitudinal analysis during the maturation of a single culture. In turn, a systematic statistical analysis of a group of topological observables grants us the possibility of quantifying and tracking the progression of the main networks characteristics during the self-organization process of the culture. Our results point to the existence of a particular state corresponding to a small-world network configuration, in which several relevant graphs micro- and meso-scale properties emerge. Finally, we identify the main physical processes taking place during the cultures morphological transformations, and embed them into a simplified growth model that quantitatively reproduces the overall set of experimental observations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Esta tesis estudia la evolución estructural de conjuntos de neuronas como la capacidad de auto-organización desde conjuntos de neuronas separadas hasta que forman una red (clusterizada) compleja. Esta tesis contribuye con el diseño e implementación de un algoritmo no supervisado de segmentación basado en grafos con un coste computacional muy bajo. Este algoritmo proporciona de forma automática la estructura completa de la red a partir de imágenes de cultivos neuronales tomadas con microscopios de fase con una resolución muy alta. La estructura de la red es representada mediante un objeto matemático (matriz) cuyos nodos representan a las neuronas o grupos de neuronas y los enlaces son las conexiones reconstruidas entre ellos. Este algoritmo extrae también otras medidas morfológicas importantes que caracterizan a las neuronas y a las neuritas. A diferencia de otros algoritmos hasta el momento, que necesitan de fluorescencia y técnicas inmunocitoquímicas, el algoritmo propuesto permite el estudio longitudinal de forma no invasiva posibilitando el estudio durante la formación de un cultivo. Además, esta tesis, estudia de forma sistemática un grupo de variables topológicas que garantizan la posibilidad de cuantificar e investigar la progresión de las características principales durante el proceso de auto-organización del cultivo. Nuestros resultados muestran la existencia de un estado concreto correspondiente a redes con configuracin small-world y la emergencia de propiedades a micro- y meso-escala de la estructura de la red. Finalmente, identificamos los procesos físicos principales que guían las transformaciones morfológicas de los cultivos y proponemos un modelo de crecimiento de red que reproduce el comportamiento cuantitativamente de las observaciones experimentales. ABSTRACT The thesis analyzes the morphological evolution of assemblies of living neurons, as they self-organize from collections of separated cells into elaborated, clustered, networks. In particular, it contributes with the design and implementation of a graph-based unsupervised segmentation algorithm, having an associated very low computational cost. The processing automatically retrieves the whole network structure from large scale phase-contrast images taken at high resolution throughout the entire life of a cultured neuronal network. The network structure is represented by a mathematical object (a matrix) in which nodes are identified neurons or neurons clusters, and links are the reconstructed connections between them. The algorithm is also able to extract any other relevant morphological information characterizing neurons and neurites. More importantly, and at variance with other segmentation methods that require fluorescence imaging from immunocyto- chemistry techniques, our measures are non invasive and entitle us to carry out a fully longitudinal analysis during the maturation of a single culture. In turn, a systematic statistical analysis of a group of topological observables grants us the possibility of quantifying and tracking the progression of the main networks characteristics during the self-organization process of the culture. Our results point to the existence of a particular state corresponding to a small-world network configuration, in which several relevant graphs micro- and meso-scale properties emerge. Finally, we identify the main physical processes taking place during the cultures morphological transformations, and embed them into a simplified growth model that quantitatively reproduces the overall set of experimental observations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Thesis (M. S.)--University of Illinois at Urbana-Champaign.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

With the growing commercial importance of the Internet and the development of new real-time, connection-oriented services like IP-telephony and electronic commerce resilience is becoming a key issue in the design of TP-based networks. Two emerging technologies, which can accomplish the task of efficient information transfer, are Multiprotocol Label Switching (MPLS) and Differentiated Services. A main benefit of MPLS is the ability to introduce traffic-engineering concepts due to its connection-oriented characteristic. With MPLS it is possible to assign different paths for packets through the network. Differentiated services divides traffic into different classes and treat them differently, especially when there is a shortage of network resources. In this thesis, a framework was proposed to integrate the above two technologies and its performance in providing load balancing and improving QoS was evaluated. Simulation and analysis of this framework demonstrated that the combination of MPLS and Differentiated services is a powerful tool for QoS provisioning in IP networks.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Linux commands that are generally useful for analyzing data; it is very easy to reduce phenomena such as links, nodes, URLs or downloads, to multiply repeating identifiers and then sorting and counting appearances.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This thesis proposes a novel graphical model for inference called the Affinity Network,which displays the closeness between pairs of variables and is an alternative to Bayesian Networks and Dependency Networks. The Affinity Network shares some similarities with Bayesian Networks and Dependency Networks but avoids their heuristic and stochastic graph construction algorithms by using a message passing scheme. A comparison with the above two instances of graphical models is given for sparse discrete and continuous medical data and data taken from the UCI machine learning repository. The experimental study reveals that the Affinity Network graphs tend to be more accurate on the basis of an exhaustive search with the small datasets. Moreover, the graph construction algorithm is faster than the other two methods with huge datasets. The Affinity Network is also applied to data produced by a synchronised system. A detailed analysis and numerical investigation into this dynamical system is provided and it is shown that the Affinity Network can be used to characterise its emergent behaviour even in the presence of noise.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Internet of things (IoT) is still in its infancy and has attracted much interest in many industrial sectors including medical fields, logistics tracking, smart cities and automobiles. However, as a paradigm, it is susceptible to a range of significant intrusion threats. This paper presents a threat analysis of the IoT and uses an Artificial Neural Network (ANN) to combat these threats. A multi-level perceptron, a type of supervised ANN, is trained using internet packet traces, then is assessed on its ability to thwart Distributed Denial of Service (DDoS/DoS) attacks. This paper focuses on the classification of normal and threat patterns on an IoT Network. The ANN procedure is validated against a simulated IoT network. The experimental results demonstrate 99.4% accuracy and can successfully detect various DDoS/DoS attacks.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Network traffic arises from the superposition of Origin-Destination (OD) flows. Hence, a thorough understanding of OD flows is essential for modeling network traffic, and for addressing a wide variety of problems including traffic engineering, traffic matrix estimation, capacity planning, forecasting and anomaly detection. However, to date, OD flows have not been closely studied, and there is very little known about their properties. We present the first analysis of complete sets of OD flow timeseries, taken from two different backbone networks (Abilene and Sprint-Europe). Using Principal Component Analysis (PCA), we find that the set of OD flows has small intrinsic dimension. In fact, even in a network with over a hundred OD flows, these flows can be accurately modeled in time using a small number (10 or less) of independent components or dimensions. We also show how to use PCA to systematically decompose the structure of OD flow timeseries into three main constituents: common periodic trends, short-lived bursts, and noise. We provide insight into how the various constituents contribute to the overall structure of OD flows and explore the extent to which this decomposition varies over time.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND Empirical research has illustrated an association between study size and relative treatment effects, but conclusions have been inconsistent about the association of study size with the risk of bias items. Small studies give generally imprecisely estimated treatment effects, and study variance can serve as a surrogate for study size. METHODS We conducted a network meta-epidemiological study analyzing 32 networks including 613 randomized controlled trials, and used Bayesian network meta-analysis and meta-regression models to evaluate the impact of trial characteristics and study variance on the results of network meta-analysis. We examined changes in relative effects and between-studies variation in network meta-regression models as a function of the variance of the observed effect size and indicators for the adequacy of each risk of bias item. Adjustment was performed both within and across networks, allowing for between-networks variability. RESULTS Imprecise studies with large variances tended to exaggerate the effects of the active or new intervention in the majority of networks, with a ratio of odds ratios of 1.83 (95% CI: 1.09,3.32). Inappropriate or unclear conduct of random sequence generation and allocation concealment, as well as lack of blinding of patients and outcome assessors, did not materially impact on the summary results. Imprecise studies also appeared to be more prone to inadequate conduct. CONCLUSIONS Compared to more precise studies, studies with large variance may give substantially different answers that alter the results of network meta-analyses for dichotomous outcomes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Both deepening sleep and evolving epileptic seizures are associated with increasing slow-wave activity. Larger-scale functional networks derived from electroencephalogram indicate that in both transitions dramatic changes of communication between brain areas occur. During seizures these changes seem to be 'condensed', because they evolve more rapidly than during deepening sleep. Here we set out to assess quantitatively functional network dynamics derived from electroencephalogram signals during seizures and normal sleep. Functional networks were derived from electroencephalogram signals from wakefulness, light and deep sleep of 12 volunteers, and from pre-seizure, seizure and post-seizure time periods of 10 patients suffering from focal onset pharmaco-resistant epilepsy. Nodes of the functional network represented electrical signals recorded by single electrodes and were linked if there was non-random cross-correlation between the two corresponding electroencephalogram signals. Network dynamics were then characterized by the evolution of global efficiency, which measures ease of information transmission. Global efficiency was compared with relative delta power. Global efficiency significantly decreased both between light and deep sleep, and between pre-seizure, seizure and post-seizure time periods. The decrease of global efficiency was due to a loss of functional links. While global efficiency decreased significantly, relative delta power increased except between the time periods wakefulness and light sleep, and pre-seizure and seizure. Our results demonstrate that both epileptic seizures and deepening sleep are characterized by dramatic fragmentation of larger-scale functional networks, and further support the similarities between sleep and seizures.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The ALBA 2002 Call for Papers asks the question ‘How do organizational learning and knowledge management contribute to organizational innovation and change?’. Intuitively, we would argue, the answer should be relatively straightforward as links between learning and change, and knowledge management and innovation, have long been commonly assumed to exist. On the basis of this assumption, theories of learning tend to focus ‘within organizations’, and assume a transfer of learning from individual to organization which in turn leads to change. However, empirically, we find these links are more difficult to articulate. Organizations exist in complex embedded economic, political, social and institutional systems, hence organizational change (or innovation) may be influenced by learning in this wider context. Based on our research in this wider interorganizational setting, we first make the case for the notion of network learning that we then explore to develop our appreciation of change in interorganizational networks, and how it may be facilitated. The paper begins with a brief review of lite rature on learning in the organizational and interorganizational context which locates our stance on organizational learning versus the learning organization, and social, distributed versus technical, centred views of organizational learning and knowledge. Developing from the view that organizational learning is “a normal, if problematic, process in every organization” (Easterby-Smith, 1997: 1109), we introduce the notion of network learning: learning by a group of organizations as a group. We argue this is also a normal, if problematic, process in organizational relationships (as distinct from interorganizational learning), which has particular implications for network change. Part two of the paper develops our analysis, drawing on empirical data from two studies of learning. The first study addresses the issue of learning to collaborate between industrial customers and suppliers, leading to the case for network learning. The second, larger scale study goes on to develop this theme, examining learning around several major change issues in a healthcare service provider network. The learning processes and outcomes around the introduction of a particularly controversial and expensive technology are described, providing a rich and contrasting case with the first study. In part three, we then discuss the implications of this work for change, and for facilitating change. Conclusions from the first study identify potential interventions designed to facilitate individual and organizational learning within the customer organization to develop individual and organizational ‘capacity to collaborate’. Translated to the network example, we observe that network change entails learning at all levels – network, organization, group and individual. However, presenting findings in terms of interventions is less meaningful in an interorganizational network setting given: the differences in authority structures; the less formalised nature of the network setting; and the importance of evaluating performance at the network rather than organizational level. Academics challenge both the idea of managing change and of managing networks. Nevertheless practitioners are faced with the issue of understanding and in fluencing change in the network setting. Thus we conclude that a network learning perspective is an important development in our understanding of organizational learning, capability and change, locating this in the wider context in which organizations are embedded. This in turn helps to develop our appreciation of facilitating change in interorganizational networks, both in terms of change issues (such as introducing a new technology), and change orientation and capability.