998 resultados para networking meta classifiers


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper is devoted to a case study of a new construction of classifiers. These classifiers are called automatically generated multi-level meta classifiers, AGMLMC. The construction combines diverse meta classifiers in a new way to create a unified system. This original construction can be generated automatically producing classifiers with large levels. Different meta classifiers are incorporated as low-level integral parts of another meta classifier at the top level. It is intended for the distributed computing and networking. The AGMLMC classifiers are unified classifiers with many parts that can operate in parallel. This make it easy to adopt them in distributed applications. This paper introduces new construction of classifiers and undertakes an experimental study of their performance. We look at a case study of their effectiveness in the special case of the detection and filtering of phishing emails. This is a possible important application area for such large and distributed classification systems. Our experiments investigate the effectiveness of combining diverse meta classifiers into one AGMLMC classifier in the case study of detection and filtering of phishing emails. The results show that new classifiers with large levels achieved better performance compared to the base classifiers and simple meta classifiers classifiers. This demonstrates that the new technique can be applied to increase the performance if diverse meta classifiers are included in the system.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This paper is devoted to empirical investigation of novel multi-level ensemble meta classifiers for the detection and monitoring of progression of cardiac autonomic neuropathy, CAN, in diabetes patients. Our experiments relied on an extensive database and concentrated on ensembles of ensembles, or multi-level meta classifiers, for the classification of cardiac autonomic neuropathy progression. First, we carried out a thorough investigation comparing the performance of various base classifiers for several known sets of the most essential features in this database and determined that Random Forest significantly and consistently outperforms all other base classifiers in this new application. Second, we used feature selection and ranking implemented in Random Forest. It was able to identify a new set of features, which has turned out better than all other sets considered for this large and well-known database previously. Random Forest remained the very best classier for the new set of features too. Third, we investigated meta classifiers and new multi-level meta classifiers based on Random Forest, which have improved its performance. The results obtained show that novel multi-level meta classifiers achieved further improvement and obtained new outcomes that are significantly better compared with the outcomes published in the literature previously for cardiac autonomic neuropathy.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This paper introduces and investigates large iterative multitier ensemble (LIME) classifiers specifically tailored for big data. These classifiers are very large, but are quite easy to generate and use. They can be so large that it makes sense to use them only for big data. They are generated automatically as a result of several iterations in applying ensemble meta classifiers. They incorporate diverse ensemble meta classifiers into several tiers simultaneously and combine them into one automatically generated iterative system so that many ensemble meta classifiers function as integral parts of other ensemble meta classifiers at higher tiers. In this paper, we carry out a comprehensive investigation of the performance of LIME classifiers for a problem concerning security of big data. Our experiments compare LIME classifiers with various base classifiers and standard ordinary ensemble meta classifiers. The results obtained demonstrate that LIME classifiers can significantly increase the accuracy of classifications. LIME classifiers performed better than the base classifiers and standard ensemble meta classifiers.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This paper proposes a new feature representation method based on the construction of a Confidence Matrix (CM). This representation consists of posterior probability values provided by several weak classifiers, each one trained and used in different sets of features from the original sample. The CM allows the final classifier to abstract itself from discovering underlying groups of features. In this work the CM is applied to isolated character image recognition, for which several set of features can be extracted from each sample. Experimentation has shown that the use of CM permits a significant improvement in accuracy in most cases, while the others remain the same. The results were obtained after experimenting with four well-known corpora, using evolved meta-classifiers with the k-Nearest Neighbor rule as a weak classifier and by applying statistical significance tests.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Ambient Intelligence (AmI) envisions a world where smart, electronic environments are aware and responsive to their context. People moving into these settings engage many computational devices and systems simultaneously even if they are not aware of their presence. AmI stems from the convergence of three key technologies: ubiquitous computing, ubiquitous communication and natural interfaces. The dependence on a large amount of fixed and mobile sensors embedded into the environment makes of Wireless Sensor Networks one of the most relevant enabling technologies for AmI. WSN are complex systems made up of a number of sensor nodes, simple devices that typically embed a low power computational unit (microcontrollers, FPGAs etc.), a wireless communication unit, one or more sensors and a some form of energy supply (either batteries or energy scavenger modules). Low-cost, low-computational power, low energy consumption and small size are characteristics that must be taken into consideration when designing and dealing with WSNs. In order to handle the large amount of data generated by a WSN several multi sensor data fusion techniques have been developed. The aim of multisensor data fusion is to combine data to achieve better accuracy and inferences than could be achieved by the use of a single sensor alone. In this dissertation we present our results in building several AmI applications suitable for a WSN implementation. The work can be divided into two main areas: Multimodal Surveillance and Activity Recognition. Novel techniques to handle data from a network of low-cost, low-power Pyroelectric InfraRed (PIR) sensors are presented. Such techniques allow the detection of the number of people moving in the environment, their direction of movement and their position. We discuss how a mesh of PIR sensors can be integrated with a video surveillance system to increase its performance in people tracking. Furthermore we embed a PIR sensor within the design of a Wireless Video Sensor Node (WVSN) to extend its lifetime. Activity recognition is a fundamental block in natural interfaces. A challenging objective is to design an activity recognition system that is able to exploit a redundant but unreliable WSN. We present our activity in building a novel activity recognition architecture for such a dynamic system. The architecture has a hierarchical structure where simple nodes performs gesture classification and a high level meta classifiers fuses a changing number of classifier outputs. We demonstrate the benefit of such architecture in terms of increased recognition performance, and fault and noise robustness. Furthermore we show how we can extend network lifetime by performing a performance-power trade-off. Smart objects can enhance user experience within smart environments. We present our work in extending the capabilities of the Smart Micrel Cube (SMCube), a smart object used as tangible interface within a tangible computing framework, through the development of a gesture recognition algorithm suitable for this limited computational power device. Finally the development of activity recognition techniques can greatly benefit from the availability of shared dataset. We report our experience in building a dataset for activity recognition. Such dataset is freely available to the scientific community for research purposes and can be used as a testbench for developing, testing and comparing different activity recognition techniques.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Practical usage of machine learning is gaining strategic importance in enterprises looking for business intelligence. However, most enterprise data is distributed in multiple relational databases with expert-designed schema. Using traditional single-table machine learning techniques over such data not only incur a computational penalty for converting to a flat form (mega-join), even the human-specified semantic information present in the relations is lost. In this paper, we present a practical, two-phase hierarchical meta-classification algorithm for relational databases with a semantic divide and conquer approach. We propose a recursive, prediction aggregation technique over heterogeneous classifiers applied on individual database tables. The proposed algorithm was evaluated on three diverse datasets. namely TPCH, PKDD and UCI benchmarks and showed considerable reduction in classification time without any loss of prediction accuracy. (C) 2012 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, we present a machine learning approach for subject independent human action recognition using depth camera, emphasizing the importance of depth in recognition of actions. The proposed approach uses the flow information of all 3 dimensions to classify an action. In our approach, we have obtained the 2-D optical flow and used it along with the depth image to obtain the depth flow (Z motion vectors). The obtained flow captures the dynamics of the actions in space time. Feature vectors are obtained by averaging the 3-D motion over a grid laid over the silhouette in a hierarchical fashion. These hierarchical fine to coarse windows capture the motion dynamics of the object at various scales. The extracted features are used to train a Meta-cognitive Radial Basis Function Network (McRBFN) that uses a Projection Based Learning (PBL) algorithm, referred to as PBL-McRBFN, henceforth. PBL-McRBFN begins with zero hidden neurons and builds the network based on the best human learning strategy, namely, self-regulated learning in a meta-cognitive environment. When a sample is used for learning, PBLMcRBFN uses the sample overlapping conditions, and a projection based learning algorithm to estimate the parameters of the network. The performance of PBL-McRBFN is compared to that of a Support Vector Machine (SVM) and Extreme Learning Machine (ELM) classifiers with representation of every person and action in the training and testing datasets. Performance study shows that PBL-McRBFN outperforms these classifiers in recognizing actions in 3-D. Further, a subject-independent study is conducted by leave-one-subject-out strategy and its generalization performance is tested. It is observed from the subject-independent study that McRBFN is capable of generalizing actions accurately. The performance of the proposed approach is benchmarked with Video Analytics Lab (VAL) dataset and Berkeley Multimodal Human Action Database (MHAD). (C) 2013 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, we propose a H.264/AVC compressed domain human action recognition system with projection based metacognitive learning classifier (PBL-McRBFN). The features are extracted from the quantization parameters and the motion vectors of the compressed video stream for a time window and used as input to the classifier. Since compressed domain analysis is done with noisy, sparse compression parameters, it is a huge challenge to achieve performance comparable to pixel domain analysis. On the positive side, compressed domain allows rapid analysis of videos compared to pixel level analysis. The classification results are analyzed for different values of Group of Pictures (GOP) parameter, time window including full videos. The functional relationship between the features and action labels are established using PBL-McRBFN with a cognitive and meta-cognitive component. The cognitive component is a radial basis function, while the meta-cognitive component employs self-regulation to achieve better performance in subject independent action recognition task. The proposed approach is faster and shows comparable performance with respect to the state-of-the-art pixel domain counterparts. It employs partial decoding, which rules out the complexity of full decoding, and minimizes computational load and memory usage. This results in reduced hardware utilization and increased speed of classification. The results are compared with two benchmark datasets and show more than 90% accuracy using the PBL-McRBFN. The performance for various GOP parameters and group of frames are obtained with twenty random trials and compared with other well-known classifiers in machine learning literature. (C) 2015 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the world we are constantly performing everyday actions. Two of these actions are frequent and of great importance: classify (sort by classes) and take decision. When we encounter problems with a relatively high degree of complexity, we tend to seek other opinions, usually from people who have some knowledge or even to the extent possible, are experts in the problem domain in question in order to help us in the decision-making process. Both the classification process as the process of decision making, we are guided by consideration of the characteristics involved in the specific problem. The characterization of a set of objects is part of the decision making process in general. In Machine Learning this classification happens through a learning algorithm and the characterization is applied to databases. The classification algorithms can be employed individually or by machine committees. The choice of the best methods to be used in the construction of a committee is a very arduous task. In this work, it will be investigated meta-learning techniques in selecting the best configuration parameters of homogeneous committees for applications in various classification problems. These parameters are: the base classifier, the architecture and the size of this architecture. We investigated nine types of inductors candidates for based classifier, two methods of generation of architecture and nine medium-sized groups for architecture. Dimensionality reduction techniques have been applied to metabases looking for improvement. Five classifiers methods are investigated as meta-learners in the process of choosing the best parameters of a homogeneous committee.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Definition of acute renal allograft rejection (AR) markers remains clinically relevant. Features of T-cell-mediated AR are tubulointerstitial and vascular inflammation associated with excessive extracellular matrix (ECM) remodeling, regulated by metzincins, including matrix metalloproteases (MMP). Our study focused on expression of metzincins (METS), and metzincins and related genes (MARGS) in renal allograft biopsies using four independent microarray data sets. Our own cases included normal histology (N, n = 20), borderline changes (BL, n = 4), AR (n = 10) and AR + IF/TA (n = 7). MARGS enriched in all data sets were further examined on mRNA and/or protein level in additional patients. METS and MARGS differentiated AR from BL, AR + IF/TA and N in a principal component analysis. Their expression changes correlated to Banff t- and i-scores. Two AR classifiers, based on METS (including MMP7, TIMP1), or on MARGS were established in our own and validated in the three additional data sets. Thirteen MARGS were significantly enriched in AR patients of all data sets comprising MMP7, -9, TIMP1, -2, thrombospondin2 (THBS2) and fibrillin1. RT-PCR using microdissected glomeruli/tubuli confirmed MMP7, -9 and THBS2 microarray results; immunohistochemistry showed augmentation of MMP2, -9 and TIMP1 in AR. TIMP1 and THBS2 were enriched in AR patient serum. Therefore, differentially expressed METS and MARGS especially TIMP1, MMP7/-9 represent potential molecular AR markers.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The microarray technology provides a high-throughput technique to study gene expression. Microarrays can help us diagnose different types of cancers, understand biological processes, assess host responses to drugs and pathogens, find markers for specific diseases, and much more. Microarray experiments generate large amounts of data. Thus, effective data processing and analysis are critical for making reliable inferences from the data. ^ The first part of dissertation addresses the problem of finding an optimal set of genes (biomarkers) to classify a set of samples as diseased or normal. Three statistical gene selection methods (GS, GS-NR, and GS-PCA) were developed to identify a set of genes that best differentiate between samples. A comparative study on different classification tools was performed and the best combinations of gene selection and classifiers for multi-class cancer classification were identified. For most of the benchmarking cancer data sets, the gene selection method proposed in this dissertation, GS, outperformed other gene selection methods. The classifiers based on Random Forests, neural network ensembles, and K-nearest neighbor (KNN) showed consistently god performance. A striking commonality among these classifiers is that they all use a committee-based approach, suggesting that ensemble classification methods are superior. ^ The same biological problem may be studied at different research labs and/or performed using different lab protocols or samples. In such situations, it is important to combine results from these efforts. The second part of the dissertation addresses the problem of pooling the results from different independent experiments to obtain improved results. Four statistical pooling techniques (Fisher inverse chi-square method, Logit method. Stouffer's Z transform method, and Liptak-Stouffer weighted Z-method) were investigated in this dissertation. These pooling techniques were applied to the problem of identifying cell cycle-regulated genes in two different yeast species. As a result, improved sets of cell cycle-regulated genes were identified. The last part of dissertation explores the effectiveness of wavelet data transforms for the task of clustering. Discrete wavelet transforms, with an appropriate choice of wavelet bases, were shown to be effective in producing clusters that were biologically more meaningful. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The idea of meta-cognitive learning has enriched the landscape of evolving systems, because it emulates three fundamental aspects of human learning: what-to-learn; how-to-learn; and when-to-learn. However, existing meta-cognitive algorithms still exclude Scaffolding theory, which can realize a plug-and-play classifier. Consequently, these algorithms require laborious pre- and/or post-training processes to be carried out in addition to the main training process. This paper introduces a novel meta-cognitive algorithm termed GENERIC-Classifier (gClass), where the how-to-learn part constitutes a synergy of Scaffolding Theory - a tutoring theory that fosters the ability to sort out complex learning tasks, and Schema Theory - a learning theory of knowledge acquisition by humans. The what-to-learn aspect adopts an online active learning concept by virtue of an extended conflict and ignorance method, making gClass an incremental semi-supervised classifier, whereas the when-to-learn component makes use of the standard sample reserved strategy. A generalized version of the Takagi-Sugeno Kang (TSK) fuzzy system is devised to serve as the cognitive constituent. That is, the rule premise is underpinned by multivariate Gaussian functions, while the rule consequent employs a subset of the non-linear Chebyshev polynomial. Thorough empirical studies, confirmed by their corresponding statistical tests, have numerically validated the efficacy of gClass, which delivers better classification rates than state-of-the-art classifiers while having less complexity.