955 resultados para network modeling


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this work, the oxidation of the model pollutant phenol has been studied by means of the O(3), O(3)-UV, and O(3)-H(2)O(2) processes. Experiments were carried out in a fed-batch system to investigate the effects of initial dissolved organic carbon concentration, initial, ozone concentration in the gas phase, the presence or absence of UVC radiation, and initial hydrogen peroxide concentration. Experimental results were used in the modeling of the degradation processes by neural networks in order to simulate DOC-time profiles and evaluate the relative importance of process variables.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Tesis (Doctor en Ciencias con Orientación en Procesos Sustentables) UANL, 2013.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Metal matrix composites (MMC) having aluminium (Al) in the matrix phase and silicon carbide particles (SiCp) in reinforcement phase, ie Al‐SiCp type MMC, have gained popularity in the re‐cent past. In this competitive age, manufacturing industries strive to produce superior quality products at reasonable price. This is possible by achieving higher productivity while performing machining at optimum combinations of process variables. The low weight and high strength MMC are found suitable for variety of components

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper introduces a new neurofuzzy model construction algorithm for nonlinear dynamic systems based upon basis functions that are Bezier-Bernstein polynomial functions. This paper is generalized in that it copes with n-dimensional inputs by utilising an additive decomposition construction to overcome the curse of dimensionality associated with high n. This new construction algorithm also introduces univariate Bezier-Bernstein polynomial functions for the completeness of the generalized procedure. Like the B-spline expansion based neurofuzzy systems, Bezier-Bernstein polynomial function based neurofuzzy networks hold desirable properties such as nonnegativity of the basis functions, unity of support, and interpretability of basis function as fuzzy membership functions, moreover with the additional advantages of structural parsimony and Delaunay input space partition, essentially overcoming the curse of dimensionality associated with conventional fuzzy and RBF networks. This new modeling network is based on additive decomposition approach together with two separate basis function formation approaches for both univariate and bivariate Bezier-Bernstein polynomial functions used in model construction. The overall network weights are then learnt using conventional least squares methods. Numerical examples are included to demonstrate the effectiveness of this new data based modeling approach.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Neuronal morphology is hugely variable across brain regions and species, and their classification strategies are a matter of intense debate in neuroscience. GABAergic cortical interneurons have been a challenge because it is difficult to find a set of morphological properties which clearly define neuronal types. A group of 48 neuroscience experts around the world were asked to classify a set of 320 cortical GABAergic interneurons according to the main features of their three-dimensional morphological reconstructions. A methodology for building a model which captures the opinions of all the experts was proposed. First, one Bayesian network was learned for each expert, and we proposed an algorithm for clustering Bayesian networks corresponding to experts with similar behaviors. Then, a Bayesian network which represents the opinions of each group of experts was induced. Finally, a consensus Bayesian multinet which models the opinions of the whole group of experts was built. A thorough analysis of the consensus model identified different behaviors between the experts when classifying the interneurons in the experiment. A set of characterizing morphological traits for the neuronal types was defined by performing inference in the Bayesian multinet. These findings were used to validate the model and to gain some insights into neuron morphology.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Differential pathophysiological roles of estrogen receptors alpha (ERα) and beta (ERβ) are of particular interest for phytochemical screening. A QSAR incorporating theoretical descriptors was developed in the present study utilizing sequential multiple-output artificial neural networks. Significant steric, constitutional, topological and electronic descriptors were identified enabling ER affinity differentiation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Part 20: Health and Care Networks

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Finding the structure of a confined liquid crystal is a difficult task since both the density and order parameter profiles are nonuniform. Starting from a microscopic model and density-functional theory, one has to either (i) solve a nonlinear, integral Euler-Lagrange equation, or (ii) perform a direct multidimensional free energy minimization. The traditional implementations of both approaches are computationally expensive and plagued with convergence problems. Here, as an alternative, we introduce an unsupervised variant of the multilayer perceptron (MLP) artificial neural network for minimizing the free energy of a fluid of hard nonspherical particles confined between planar substrates of variable penetrability. We then test our algorithm by comparing its results for the structure (density-orientation profiles) and equilibrium free energy with those obtained by standard iterative solution of the Euler-Lagrange equations and with Monte Carlo simulation results. Very good agreement is found and the MLP method proves competitively fast, flexible, and refinable. Furthermore, it can be readily generalized to the richer experimental patterned-substrate geometries that are now experimentally realizable but very problematic to conventional theoretical treatments.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The accurate determination of thermophysical properties of milk is very important for design, simulation, optimization, and control of food processing such as evaporation, heat exchanging, spray drying, and so forth. Generally, polynomial methods are used for prediction of these properties based on empirical correlation to experimental data. Artificial neural networks are better Suited for processing noisy and extensive knowledge indexing. This article proposed the application of neural networks for prediction of specific heat, thermal conductivity, and density of milk with temperature ranged from 2.0 to 71.0degreesC, 72.0 to 92.0% of water content (w/w), and 1.350 to 7.822% of fat content (w/w). Artificial neural networks presented a better prediction capability of specific heat, thermal conductivity, and density of milk than polynomial modeling. It showed a reasonable alternative to empirical modeling for thermophysical properties of foods.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

When something unfamiliar emerges or when something familiar does something unexpected people need to make sense of what is emerging or going on in order to act. Social representations theory suggests how individuals and society make sense of the unfamiliar and hence how the resultant social representations (SRs) cognitively, emotionally, and actively orient people and enable communication. SRs are social constructions that emerge through individual and collective engagement with media and with everyday conversations among people. Recent developments in text analysis techniques, and in particular topic modeling, provide a potentially powerful analytical method to examine the structure and content of SRs using large samples of narrative or text. In this paper I describe the methods and results of applying topic modeling to 660 micronarratives collected from Australian academics / researchers, government employees, and members of the public in 2010-2011. The narrative fragments focused on adaptation to climate change (CC) and hence provide an example of Australian society making sense of an emerging and conflict ridden phenomena. The results of the topic modeling reflect elements of SRs of adaptation to CC that are consistent with findings in the literature as well as being reasonably robust predictors of classes of action in response to CC. Bayesian Network (BN) modeling was used to identify relationships among the topics (SR elements) and in particular to identify relationships among topics, sentiment, and action. Finally the resulting model and topic modeling results are used to highlight differences in the salience of SR elements among social groups. The approach of linking topic modeling and BN modeling offers a new and encouraging approach to analysis for ongoing research on SRs.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Thanks to recent advances in molecular biology, allied to an ever increasing amount of experimental data, the functional state of thousands of genes can now be extracted simultaneously by using methods such as cDNA microarrays and RNA-Seq. Particularly important related investigations are the modeling and identification of gene regulatory networks from expression data sets. Such a knowledge is fundamental for many applications, such as disease treatment, therapeutic intervention strategies and drugs design, as well as for planning high-throughput new experiments. Methods have been developed for gene networks modeling and identification from expression profiles. However, an important open problem regards how to validate such approaches and its results. This work presents an objective approach for validation of gene network modeling and identification which comprises the following three main aspects: (1) Artificial Gene Networks (AGNs) model generation through theoretical models of complex networks, which is used to simulate temporal expression data; (2) a computational method for gene network identification from the simulated data, which is founded on a feature selection approach where a target gene is fixed and the expression profile is observed for all other genes in order to identify a relevant subset of predictors; and (3) validation of the identified AGN-based network through comparison with the original network. The proposed framework allows several types of AGNs to be generated and used in order to simulate temporal expression data. The results of the network identification method can then be compared to the original network in order to estimate its properties and accuracy. Some of the most important theoretical models of complex networks have been assessed: the uniformly-random Erdos-Renyi (ER), the small-world Watts-Strogatz (WS), the scale-free Barabasi-Albert (BA), and geographical networks (GG). The experimental results indicate that the inference method was sensitive to average degree k variation, decreasing its network recovery rate with the increase of k. The signal size was important for the inference method to get better accuracy in the network identification rate, presenting very good results with small expression profiles. However, the adopted inference method was not sensible to recognize distinct structures of interaction among genes, presenting a similar behavior when applied to different network topologies. In summary, the proposed framework, though simple, was adequate for the validation of the inferred networks by identifying some properties of the evaluated method, which can be extended to other inference methods.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The large increase of distributed energy resources, including distributed generation, storage systems and demand response, especially in distribution networks, makes the management of the available resources a more complex and crucial process. With wind based generation gaining relevance, in terms of the generation mix, the fact that wind forecasting accuracy rapidly drops with the increase of the forecast anticipation time requires to undertake short-term and very short-term re-scheduling so the final implemented solution enables the lowest possible operation costs. This paper proposes a methodology for energy resource scheduling in smart grids, considering day ahead, hour ahead and five minutes ahead scheduling. The short-term scheduling, undertaken five minutes ahead, takes advantage of the high accuracy of the very-short term wind forecasting providing the user with more efficient scheduling solutions. The proposed method uses a Genetic Algorithm based approach for optimization that is able to cope with the hard execution time constraint of short-term scheduling. Realistic power system simulation, based on PSCAD , is used to validate the obtained solutions. The paper includes a case study with a 33 bus distribution network with high penetration of distributed energy resources implemented in PSCAD .

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Nos tempos atuais as empresas que atuam no ramo dos sistemas elétricos de energias enfrentam desafios cada vez mais exigentes, dado o enquadramento normativo a que estão sujeitas por parte da entidade reguladora dos serviços energéticos. No caso do Arquipélago dos Açores, o normativo relativo ao regulamento da qualidade de serviço entrou em vigor em 2006, trazendo à EDA,S.A. (Eletricidade dos Açores), entidade responsável pelo transporte e distribuição de energia na região, novas exigências para adequados níveis de eficiência e de garantias aos clientes, no que respeita à qualidade de serviço que lhes é prestado. No âmbito deste trabalho, é efetuado o estudo do trânsito de potência sobre a rede distribuição 15 kV da ilha Graciosa. Para tal, é realizada a modelização da rede no software de rede elétricas porwerworld 8.0. e são idealizados um conjunto de cenários de exploração da rede, que visam simular situações reais que ocorrem na exploração diária da rede de distribuição da ilha. Nas simulações a efetuar consideram-se dois cenários com perfil de carga distintos, um referente à ponta máxima, e outro referente ao vazio mínimo, verificados no ano de 2014. Quanto ao modo de exploração da rede nos cenários a simular, é contemplado o modo de exploração normalmente operado pela empresa gestora, bem como diversas reconfigurações sobre o modo de exploração normalmente operado, realizadas através da abertura e fecho dos aparelhos de corte constituintes da rede. Em todos os cenários simulados, é realizado um estudo relativamente à potência de perdas do sistema, ao perfil da tensão nos diversos postos de transformação, e ao congestionamento de energia verificado nas linhas de distribuição da rede.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Economy, and consequently trade, is a fundamental part of human social organization which, until now, has not been studied within the network modeling framework. Here we present the first, to the best of our knowledge, empirical characterization of the world trade web, that is, the network built upon the trade relationships between different countries in the world. This network displays the typical properties of complex networks, namely, scale-free degree distribution, the small-world property, a high clustering coefficient, and, in addition, degree-degree correlation between different vertices. All these properties make the world trade web a complex network, which is far from being well described through a classical random network description.