838 resultados para network congestion control


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We propose several stochastic approximation implementations for related algorithms in flow-control of communication networks. First, a discrete-time implementation of Kelly's primal flow-control algorithm is proposed. Convergence with probability 1 is shown, even in the presence of communication delays and stochastic effects seen in link congestion indications. This ensues from an analysis of the flow-control algorithm using the asynchronous stochastic approximation (ASA) framework. Two relevant enhancements are then pursued: a) an implementation of the primal algorithm using second-order information, and b) an implementation where edge-routers rectify misbehaving flows. Next, discretetime implementations of Kelly's dual algorithm and primaldual algorithm are proposed. Simulation results a) verifying the proposed algorithms and, b) comparing the stability properties are presented.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We develop a Markov model for a TCP CUBIC connection. Next we use it to obtain approximate expressions for throughput when there may be queuing in the network. Finally we provide the throughputs different TCP CUBIC and TCP NewReno connections obtain while sharing a channel when they may have different round trip delays and packet loss probabilities.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Congestion control in wireless networks is an important and open issue. Previous research has proven the poor performance of the Transport Control Protocol (TCP) in such networks. The factors that contribute to the poor performance of TCP in wireless environments concern its unsuitability to identify/detect and react properly to network events, its TCP window based ow control algorithm that is not suitable for the wireless channel, and the congestion collapse due to mobility. New rate based mechanisms have been proposed to mitigate TCP performance in wired and wireless networks. However, these mechanisms also present poor performance, as they lack of suitable bandwidth estimation techniques for multi-hop wireless networks. It is thus important to improve congestion control performance in wireless networks, incorporating components that are suitable for wireless environments. A congestion control scheme which provides an e - cient and fair sharing of the underlying network capacity and available bandwidth among multiple competing applications is crucial to the definition of new e cient and fair congestion control schemes on wireless multi-hop networks. The Thesis is divided in three parts. First, we present a performance evaluation study of several congestion control protocols against TCP, in wireless mesh and ad-hoc networks. The obtained results show that rate based congestion control protocols need an eficient and accurate underlying available bandwidth estimation technique. The second part of the Thesis presents a new link capacity and available bandwidth estimation mechanism denoted as rt-Winf (real time wireless inference). The estimation is performed in real-time and without the need to intrusively inject packets in the network. Simulation results show that rt-Winf obtains the available bandwidth and capacity estimation with accuracy and without introducing overhead trafic in the network. The third part of the Thesis proposes the development of new congestion control mechanisms to address the congestion control problems of wireless networks. These congestion control mechanisms use cross layer information, obtained by rt-Winf, to accurately and eficiently estimate the available bandwidth and the path capacity over a wireless network path. Evaluation of these new proposed mechanisms, through ns-2 simulations, shows that the cooperation between rt-Winf and the congestion control algorithms is able to significantly increase congestion control eficiency and network performance.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the recent years, the unpredictable growth of the Internet has moreover pointed out the congestion problem, one of the problems that historicallyha ve affected the network. This paper deals with the design and the evaluation of a congestion control algorithm which adopts a FuzzyCon troller. The analogyb etween Proportional Integral (PI) regulators and Fuzzycon trollers is discussed and a method to determine the scaling factors of the Fuzzycon troller is presented. It is shown that the Fuzzycon troller outperforms the PI under traffic conditions which are different from those related to the operating point considered in the design.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The growth of the Internet has increased the need for scalable congestion control mechanisms in high speed networks. In this context, we propose a rate-based explicit congestion control mechanism with which the sources are provided with the rate at which they can transmit. These rates are computed with a distributed max-min fair algorithm, SLBN. The novelty of SLBN is that it combines two interesting features not simultaneously present in existing proposals: scalability and fast convergence to the max-min fair rates, even under high session churn. SLBN is scalable because routers only maintain a constant amount of state information (only three integer variables per link) and only incur a constant amount of computation per protocol packet, independently of the number of sessions that cross the router. Additionally, SLBN does not require processing any data packet, and it converges independently of sessions' RTT. Finally, by design, the protocol is conservative when assigning rates, even in the presence of high churn, which helps preventing link overshoots in transient periods. We claim that, with all these features, our mechanism is a good candidate to be used in real deployments.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Congestion control is critical for the provisioning of quality of services (QoS) over dedicated short range communications (DSRC) vehicle networks for road safety applications. In this paper we propose a congestion control method for DSRC vehicle networks at road intersection, with the aims of providing high availability and low latency channels for high priority emergency safety applications while maximizing channel utilization for low priority routine safety applications. In this method a offline simulation based approach is used to find out the best possible configurations of message rate and MAC layer backoff exponent (BE) for a given number of vehicles equipped with DSRC radios. The identified best configurations are then used online by an roadside access point (AP) for system operation. Simulation results demonstrated that this adaptive method significantly outperforms the fixed control method under varying number of vehicles. The impact of estimation error on the number of vehicles in the network on system level performance is also investigated.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Next generation networks are characterized by ever increasing complexity, intelligence, heterogeneous technologies and increasing user expectations. Telecommunication networks in particular have become truly global, consisting of a variety of national and regional networks, both wired and wireless. Consequently, the management of telecommunication networks is becoming increasingly complex. In addition, network security and reliability requirements require additional overheads which increase the size of the data records. This in turn causes acute network traffic congestions. There is no single network management methodology to control the various requirements of today's networks, and provides a good level of Quality of Service (QoS), and network security. Therefore, an integrated approach is needed in which a combination of methodologies can provide solutions and answers to network events (which cause severe congestions and compromise the quality of service and security). The proposed solution focused on a systematic approach to design a network management system based upon the recent advances in the mobile agent technologies. This solution has provided a new traffic management system for telecommunication networks that is capable of (1) reducing the network traffic load (thus reducing traffic congestion), (2) overcoming existing network latency, (3) adapting dynamically to the traffic load of the system, (4) operating in heterogeneous environments with improved security, and (5) having robust and fault tolerance behavior. This solution has solved several key challenges in the development of network management for telecommunication networks using mobile agents. We have designed several types of agents, whose interactions will allow performing some complex management actions, and integrating them. Our solution is decentralized to eliminate excessive bandwidth usage and at the same time has extended the capabilities of the Simple Network Management Protocol (SNMP). Our solution is fully compatible with the existing standards.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Effective network overload alleviation is very much essential in order to maintain security and integrity from the operational viewpoint of deregulated power systems. This paper aims at developing a methodology to reschedule the active power generation from the sources in order to manage the network congestion under normal/contingency conditions. An effective method has been proposed using fuzzy rule based inference system. Using virtual flows concept, which provides partial contributions/counter flows in the network elements is used as a basis in the proposed method to manage network congestions to the possible extent. The proposed method is illustrated on a sample 6 bus test system and on modified IEEE 39 bus system.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The increased diversity of Internet application requirements has spurred recent interests in flexible congestion control mechanisms. Window-based congestion control schemes use increase rules to probe available bandwidth, and decrease rules to back off when congestion is detected. The parameterization of these control rules is done so as to ensure that the resulting protocol is TCP-friendly in terms of the relationship between throughput and packet loss rate. In this paper, we propose a novel window-based congestion control algorithm called SIMD (Square-Increase/Multiplicative-Decrease). Contrary to previous memory-less controls, SIMD utilizes history information in its control rules. It uses multiplicative decrease but the increase in window size is in proportion to the square of the time elapsed since the detection of the last loss event. Thus, SIMD can efficiently probe available bandwidth. Nevertheless, SIMD is TCP-friendly as well as TCP-compatible under RED, and it has much better convergence behavior than TCP-friendly AIMD and binomial algorithms proposed recently.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The increased diversity of Internet application requirements has spurred recent interests in transport protocols with flexible transmission controls. In window-based congestion control schemes, increase rules determine how to probe available bandwidth, whereas decrease rules determine how to back off when losses due to congestion are detected. The parameterization of these control rules is done so as to ensure that the resulting protocol is TCP-friendly in terms of the relationship between throughput and loss rate. In this paper, we define a new spectrum of window-based congestion control algorithms that are TCP-friendly as well as TCP-compatible under RED. Contrary to previous memory-less controls, our algorithms utilize history information in their control rules. Our proposed algorithms have two salient features: (1) They enable a wider region of TCP-friendliness, and thus more flexibility in trading off among smoothness, aggressiveness, and responsiveness; and (2) they ensure a faster convergence to fairness under a wide range of system conditions. We demonstrate analytically and through extensive ns simulations the steady-state and transient behaviors of several instances of this new spectrum of algorithms. In particular, SIMD is one instance in which the congestion window is increased super-linearly with time since the detection of the last loss. Compared to recently proposed TCP-friendly AIMD and binomial algorithms, we demonstrate the superiority of SIMD in: (1) adapting to sudden increases in available bandwidth, while maintaining competitive smoothness and responsiveness; and (2) rapidly converging to fairness and efficiency.