970 resultados para net radiation partitioning
Resumo:
Leaf wetness duration (LWD) is related to plant disease occurrence and is therefore a key parameter in agrometeorology. As LWD is seldom measured at standard weather stations, it must be estimated in order to ensure the effectiveness of warning systems and the scheduling of chemical disease control. Among the models used to estimate LWD, those that use physical principles of dew formation and dew and/or rain evaporation have shown good portability and sufficiently accurate results for operational use. However, the requirement of net radiation (Rn) is a disadvantage foroperational physical models, since this variable is usually not measured over crops or even at standard weather stations. With the objective of proposing a solution for this problem, this study has evaluated the ability of four models to estimate hourly Rn and their impact on LWD estimates using a Penman-Monteith approach. A field experiment was carried out in Elora, Ontario, Canada, with measurements of LWD, Rn and other meteorological variables over mowed turfgrass for a 58 day period during the growing season of 2003. Four models for estimating hourly Rn based on different combinations of incoming solar radiation (Rg), airtemperature (T), relative humidity (RH), cloud cover (CC) and cloud height (CH), were evaluated. Measured and estimated hourly Rn values were applied in a Penman-Monteith model to estimate LWD. Correlating measured and estimated Rn, we observed that all models performed well in terms of estimating hourly Rn. However, when cloud data were used the models overestimated positive Rn and underestimated negative Rn. When only Rg and T were used to estimate hourly Rn, the model underestimated positive Rn and no tendency was observed for negative Rn. The best performance was obtained with Model I, which presented, in general, the smallest mean absolute error (MAE) and the highest C-index. When measured LWD was compared to the Penman-Monteith LWD, calculated with measured and estimated Rn, few differences were observed. Both precision and accuracy were high, with the slopes of the relationships ranging from 0.96 to 1.02 and R-2 from 0.85 to 0.92, resulting in C-indices between 0.87 and 0.93. The LWD mean absolute errors associated with Rn estimates were between 1.0 and 1.5h, which is sufficient for use in plant disease management schemes.
Resumo:
This paper describes the albedo (r) and estimates of net radiation and global solar irradiance for green beans crop (Phaseolus vulgaris L.), cultivated in greenhouse with cover of polyethylene and field conditions, in Botucatu, SP, Brazil (22º 54' S; 48º 27' W; 850 m). The solar global irradiance (Rg) and solar reflected radiation (Rr) were used to estimate the albedo through the ratio between Rr and Rg. The diurnal curves of albedo were obtained for days with clear sky and partially cloudy conditions, for different phenological stages of the crop. The albedo ranged with the solar elevation, the environment and the phenological stages. The cloudiness range have almost no influence on the albedo diurnal amount. The estimation of radiation were made by linear regression, using the global solar irradiance (Rg) and net short-waves radiation (Rc) as independent variables. All estimates of radiation showed better adjustment for specific phenological periods compared to the entire crop growing cycle. The net radiation in the greenhouse has been estimated by the global solar irradiance measured at field conditions.
Resumo:
The net radiation (Rn) represents the main source of energy for physical and chemical processes that occur in the surface-atmosphere interface, and it is used for air and soil heating, water transfer, in the form of vapor from the surface to the atmosphere, and for the metabolism of plants, especially photosynthesis. If there is no record of net radiation in certain areas, the use of information is important to help determine it. Among them we can highlight those provided by remote sensing. In this context, this work aims to estimate the net radiation, with the use of products of MODIS sensor, in the sub-basins of Entre Ribeiros creek and Preto River, located between the Brazilian states of Goiás and Minas Gerais. The SEBAL (Surface Energy Balance Algorithm for Land) was used to obtain the Rn in four different days in the period of July to October, 2007. The Rn results obtained were consistent with others cited in the literature and are important because the orbital information can help determine the Rn in areas where there are not automatic weather stations to record the net radiation.
Resumo:
Reliable and fine resolution estimates of surface net-radiation are required for estimating latent and sensible heat fluxes between the land surface and the atmosphere. However, currently, fine resolution estimates of net-radiation are not available and consequently it is challenging to develop multi-year estimates of evapotranspiration at scales that can capture land surface heterogeneity and are relevant for policy and decision-making. We developed and evaluated a global net-radiation product at 5 km and 8-day resolution by combining mutually consistent atmosphere and land data from the Moderate Resolution Imaging Spectroradiometer (MODIS) on board Terra. Comparison with net-radiation measurements from 154 globally distributed sites (414 site-years) from the FLUXNET and Surface Radiation budget network (SURFRAD) showed that the net-radiation product agreed well with measurements across seasons and climate types in the extratropics (Wilmott’s index ranged from 0.74 for boreal to 0.63 for Mediterranean sites). Mean absolute deviation between the MODIS and measured net-radiation ranged from 38.0 ± 1.8 W∙m−2 in boreal to 72.0 ± 4.1 W∙m−2 in the tropical climates. The mean bias was small and constituted only 11%, 0.7%, 8.4%, 4.2%, 13.3%, and 5.4% of the mean absolute error in daytime net-radiation in boreal, Mediterranean, temperate-continental, temperate, semi-arid, and tropical climate, respectively. To assess the accuracy of the broader spatiotemporal patterns, we upscaled error-quantified MODIS net-radiation and compared it with the net-radiation estimates from the coarse spatial (1° × 1°) but high temporal resolution gridded net-radiation product from the Clouds and Earth’s Radiant Energy System (CERES). Our estimates agreed closely with the net-radiation estimates from the CERES. Difference between the two was less than 10 W•m−2 in 94% of the total land area. MODIS net-radiation product will be a valuable resource for the science community studying turbulent fluxes and energy budget at the Earth’s surface.
Resumo:
Priestley and Taylor provided a practical formulation of the partitioning of net radiation between heat flux and evaporation contained within a parameter α. Their model (PTM) needs verification under a range of environmental conditions. Micrometeorological data sets collected over the Amazon forest at the Ducke Reserve site (2°57′S; 59°57′W) gave an opportunity to evaluate α. Evidence presented here and by others shows that there is pronounced diurnal variation in α, with minimum values around midday and maximum values in the morning and evening hours. During unstable and stable conditions in the daylight hours, the Bowen ratio (B) varied from 0.10 to 0.57 and -0.71 to -0.08, respectively, whereas α varied from 0.67 to 1.16 and 1.28 to 3.12, respectively. A mean value of α = 1.16±0.56 was obtained from daytime hourly values for two days. The daily data sets from three expeditions gave a mean of α = 1.03±0.13. This work confirms that α is a function of atmospheric stability over the Amazon forest. Thus the PTM should be applied with caution over time-intervals of one day or less because of the sensitivity to variation in α. The calculated values of α are in general agreement with those reported in literature. © 1991.
Resumo:
In this article, we present a study on the surface energy balance of a polygonal tundra landscape in northeast Siberia. The study was performed during half-year periods from April to September in each of 2007 and 2008. The surface energy balance is obtained from independent measurements of the net radiation, the turbulent heat fluxes, and the ground heat flux at several sites. Short-wave radiation is the dominant factor controlling the magnitude of all the other components of the surface energy balance during the entire observation period. About 50% of the available net radiation is consumed by the latent heat flux, while the sensible and the ground heat flux are each around 20 to 30%. The ground heat flux is mainly consumed by active layer thawing. About 60% of the energy storage in the ground is attributed to the phase change of soil water. The remainder is used for soil warming down to a depth of 15 m. In particular, the controlling factors for the surface energy partitioning are snow cover, cloud cover, and the temperature gradient in the soil. The thin snow cover melts within a few days, during which the equivalent of about 20% of the snow-water evaporates or sublimates. Surface temperature differences of the heterogeneous landscape indicate spatial variabilities of sensible and latent heat fluxes, which are verified by measurements. However, spatial differences in the partitioning between sensible and latent heat flux are only measured during conditions of high radiative forcing, which only occur occasionally.
Resumo:
The objective of this paper was to describe the radiation and energy balance, during the lettuce (Lactuca sativa, L. cv. Verônica) crop cycle inside a polyethylene greenhouse. The radiation and energy balance was made inside a tunnel greenhouse with polyethylene cover (100 mum) and in an external area, both areas with 35 m². Global, reflected and net radiation, soil heat flux and air temperature (dry and humid) were measured during the crop cycle. A Datalogger, which operated at 1 Hz frequency, storing 5 minutes averages was utilized. The global (K¯) and reflected (K) radiations showed that the average transmission of global radiation (K¯in / K¯ex) was almost constant, near to 79.59%, while the average ratio of reflected radiation (Kin / Kex) was 69.21% with 8.47% standard-deviation. The normalized curves of short-wave net radiation, in relation to the global radiation (K*/ K¯), found for both environments, were almost constant at the beginning of cycle; this relation decreased in the final stage of culture. The normalized relation (Rn/ K¯) was bigger in the external area, about 12%, when the green culture covered the soil surface. The long-wave radiation balance average (L*) was bigger outside, about 50%. The energy balance, estimated in terms of vertical fluxes, showed that, for the external area, in average, 83.07% of total net radiation was converted in latent heat evaporation (LE), and 18% in soil heat flux (G), and 9.96% in sensible heat (H), while inside of the greenhouse, 58.71% of total net radiation was converted in LE, 42.68% in H, and 28.79% in G.
Resumo:
Global climate change results from a small yet persistent imbalance between the amount of sunlight absorbed by Earth and the thermal radiation emitted back to space. An apparent inconsistency has been diagnosed between interannual variations in the net radiation imbalance inferred from satellite measurements and upper-ocean heating rate from in situ measurements, and this inconsistency has been interpreted as ‘missing energy’ in the system. Here we present a revised analysis of net radiation at the top of the atmosphere from satellite data, and we estimate ocean heat content, based on three independent sources. We find that the difference between the heat balance at the top of the atmosphere and upper-ocean heat content change is not statistically significant when accounting for observational uncertainties in ocean measurements, given transitions in instrumentation and sampling. Furthermore, variability in Earth’s energy imbalance relating to El Niño-Southern Oscillation is found to be consistent within observational uncertainties among the satellite measurements, a reanalysis model simulation and one of the ocean heat content records. We combine satellite data with ocean measurements to depths of 1,800 m, and show that between January 2001 and December 2010, Earth has been steadily accumulating energy at a rate of 0.50±0.43 Wm−2 (uncertainties at the 90% confidence level). We conclude that energy storage is continuing to increase in the sub-surface ocean.
Resumo:
Scintillometry is an established technique for determining large areal average sensible heat fluxes. The scintillometer measurement is related to sensible heat flux via Monin–Obukhov similarity theory, which was developed for ideal homogeneous land surfaces. In this study it is shown that judicious application of scintillometry over heterogeneous mixed agriculture on undulating topography yields valid results when compared to eddy covariance (EC). A large aperture scintillometer (LAS) over a 2.4 km path was compared with four EC stations measuring sensible (H) and latent (LvE) heat fluxes over different vegetation (cereals and grass) which when aggregated were representative of the LAS source area. The partitioning of available energy into H and LvE varied strongly for different vegetation types, with H varying by a factor of three between senesced winter wheat and grass pasture. The LAS derived H agrees (one-to-one within the experimental uncertainty) with H aggregated from EC with a high coefficient of determination of 0.94. Chronological analysis shows individual fields may have a varying contribution to the areal average sensible heat flux on short (weekly) time scales due to phenological development and changing soil moisture conditions. Using spatially aggregated measurements of net radiation and soil heat flux with H from the LAS, the areal averaged latent heat flux (LvELAS) was calculated as the residual of the surface energy balance. The regression of LvELAS against aggregated LvE from the EC stations has a slope of 0.94, close to ideal, and demonstrates that this is an accurate method for the landscape-scale estimation of evaporation over heterogeneous complex topography.
Resumo:
Sensible heat fluxes (QH) are determined using scintillometry and eddy covariance over a suburban area. Two large aperture scintillometers provide spatially integrated fluxes across path lengths of 2.8 km and 5.5 km over Swindon, UK. The shorter scintillometer path spans newly built residential areas and has an approximate source area of 2-4 km2, whilst the long path extends from the rural outskirts to the town centre and has a source area of around 5-10 km2. These large-scale heat fluxes are compared with local-scale eddy covariance measurements. Clear seasonal trends are revealed by the long duration of this dataset and variability in monthly QH is related to the meteorological conditions. At shorter time scales the response of QH to solar radiation often gives rise to close agreement between the measurements, but during times of rapidly changing cloud cover spatial differences in the net radiation (Q*) coincide with greater differences between heat fluxes. For clear days QH lags Q*, thus the ratio of QH to Q* increases throughout the day. In summer the observed energy partitioning is related to the vegetation fraction through use of a footprint model. The results demonstrate the value of scintillometry for integrating surface heterogeneity and offer improved understanding of the influence of anthropogenic materials on surface-atmosphere interactions.
Resumo:
In this work, the diurnal evolution of the radiation balance components over the tropical Atlantic Ocean is described and analysed. The analysis is based on measurements carried Out on board a Brazilian Navy ship during the observational campaign of the FluTuA Project (`Fluxos Turbulentos sobre o Atlantico`), from 15 to 23 May 2002. The observations indicated that the albedo responds its expected to atmospheric attenuation effects with a diurnal evolution similar to the Fresnel albedo. In general, the observed longwave radiation values agreed better with the estimated values obtained without longwave reflection. In agreement with the literature, the average surface emissivity was around 0.97. The net radiation, estimated from published equations for albedo, atmospheric transmissivity and surface emissivity, agreed with the observations, indicating that these parameters are representative of the radiometric properties of the air-sea interface in the region between Natal (6 degrees S, 35.2 degrees W) and the Sao Pedro and Sao Paulo Archipelago (1 degrees N, 29.3 degrees W). Copyright (C) 2008 Royal Meteorological Society
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
As medições e estimativas dos componentes do balanço de energia foram feitos acima da copa das árvores no ecossistema de manguezal natural, localizada a 30 km da cidade de Bragança-PA, entre novembro de 2002 e agosto de 2003. Os dados foram utilizados para a análise das variações sazonais e horárias do fluxo de calor sensível e calor latente, bem como a avaliação da partição de energia. Os dados meteorológicos foram coletados pela estação meteorológica automática (EMA) e os fluxos foram calculados utilizando-se a técnica de covariância de vórtices turbulentos. Os modelos de Penman-Monteith e Shuttleworth foram usados para estimar o fluxo de calor sensível e calor latente. O objetivo deste estudo foi analisar o equilíbrio e a partição de energia no manguezal, assim como fazer uma avaliação do comportamento de modelos empíricos para estimar os fluxos de energia. O saldo de radiação apresentou valores mais elevados no período menos chuvoso. A razão de Bowen mostrou valor geralmente baixo, o que indica que uma proporção maior de energia foi utilizada sob a forma de calor latente. O modelo Shuttleworth é mais eficiente na estimativa de fluxos de calor sensível. Para estimar o fluxo de calor latente do modelo de Penman-Monteith foi mais eficiente durante a estação seca e o modelo Shuttleworth durante a estação chuvosa.
Resumo:
Neste trabalho, avaliou-se o balanço de energia na cultura soja (Glycine max (L.) Merrill), variedade Tracajá, durante a safra e entressafra, em uma área de avanço de fronteira agrícola na Amazônia, por meio do método da razão de Bowen. Durante quase todo o ciclo da cultura, maior parte da energia foi consumida na forma de calor latente, principalmente durante as fases de florescimento e frutificação. Tal característica esteve relacionada à elevada condutância estomática foliar da soja e à disponibilidade de água na região. Próximo ao fim do ciclo ocorreu uma inversão na partição de energia entre os componentes H e LE, quando maior parte da energia foi usada no aquecimento do ar (79% do saldo de radiação). Durante a entressafra observou-se a redução de 75% no fluxo de calor latente e aumento considerável de 180% no fluxo de calor sensível comparado ao encontrada durante o ciclo.