999 resultados para nestmate recognition


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Abstract Many species of social insects have the ability to recognize their nestmates. In bees, sociality is maintained by bees that recognize which individuals should be helped and which should be hanned in order to maximize fitness (either inclusive or individual) (Hamilton 1964; Lin and Michener 1972). Since female bees generally lay eggs in a single nest, it is highly likely that bees found cohabitating in the same nest are siblings. According to the kin selection hypothesis, individuals should cooperate and avoid aggression with same sex nestmates (Hamilton 1964). However, in opposite sex pairs that are likely kin, aggression should increase among nestmates as an expression of inbreeding avoidance (Lihoreau et al. 2007). Female bees often guard nest entrances, recognizing and excluding foreign conspecific females that threaten to steal nest resources (Breed and Page 1991). Conversely, males that aggressively guard territories should avoid aggression towards other males that are likely kin (Shellman-Reeve and Gamboa 1984). In order to test whether Xy/ocopa virginica can distinguish nestmates from non-nestmates, circle tube testing arenas were used. Measures of aggression, cooperation and tolerance were evaluated to detennine the presence of nestmate recognition in this species. The results of this study indicate that male and female X virginica have the ability to distinguish nestmates from non-nestmates. Individuals in same sex pairs demonstrated increased pushing, biting, and C-posturing when faced with non-nestmates. Males in same sex pairs also attempted to pass (unsuccessfully) nOIl-nestmates more often than ncstmates, suggesting that this behaviour may be an cxpression of dominancc in males. Increased cooperation exemplified by successful passes was not observed among nestmates. However, incrcased tolerance in the [onn of head-to-head touching was observed for nestmates in female same sex and opposite sex pairs. These results supported the kin selection hypothesis. Moreover, increased tolerance among opposite sex non-nestmates suggested that X virginica do not demonstrate inbreeding avoidance among nestmates. 3 The second part of this study was conducted to establish the presence and extent of drifting, or travelling to different nests, in a Xylocopa virgillica population. Drifting in flying Hymenoptera is reported to be the result of navigation error and guard bees erroneously admitting novel individuals into the nest (Michener 1966). Since bees in this study were individually marked and captured at nest entrances, the locations where individuals were caught allowed me to determine where and how often bees travelled from nest to nest. Ifbees were captured near their home nests, changing nests may have been deliberate or explained by navigational error. However, ifbees were found in nests further away from their homes, this provides stronger evidence that flying towards a novel nest may have been deliberate. Female bees are often faithful to their own nests (Kasuya 1981) and no drifting was expected in female X virginica because they raise brood and contribute to nest maintenance activities. Contrary to females, males were not expected to remain faithful to a single nest. Results showed that many more females drifted than expected and that they were most often recaptured in a single nest, either their home nest or a novel nest. There were some females that were never caught in the same nest twice. In addition, females drifted to further nests when population density was low (in 2007), suggesting they seek out and claim nesting spaces when they are available. Males, as expected, showed the opposite pattern and most males drifted from nest to nest, never recaptured in the same location. This pattern indicates that males may be nesting wherever space is available, or nesting in benches nearest to their territories. This study reveals that both female and male X virginica are capable of nestmate recognition and use this ability in a dynamic environment, where nest membership is not as stable as once thought.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Recent research has shown that entrance guards of the stingless bee Tetragonisca angustula make less errors in distinguishing nestmates from non-nestmates than all other bee species studied to date, but how they achieve this is unknown. We performed four experiments to investigate nestmate recognition by entrance guards in T. angustula. We first investigated the effect of colony odours on acceptance. Nestmates that acquired odour from non-nestmate workers were 63% more likely to be rejected while the acceptance rate of non-nestmates treated with nestmate odour increased by only 7%. We further hypothesised that guards standing on the wax entrance tube might use the tube as an odour referent. However, our findings showed that there was no difference in the acceptance of non-nestmates by guards standing on their own colony's entrance tube versus the non-nestmate's entrance tube. Moreover, treatment of bees with nestmate and non-nestmate resin or wax had a negative effect on acceptance rates of up to 65%, regardless of the origin of the wax or resin. The role of resin as a source of recognition cues was further investigated by unidirectionally transferring resin stores between colonies. Acceptance rates of nestmates declined by 37% for hives that donated resin, contrasting with resin donor hives where acceptance of non-nestmates increased by 21%. Overall, our results confirm the accuracy of nestmate recognition in T. angustula and reject the hypothesis that this high level of accuracy is due to the use of the wax entrance tubes as a referent for colony odour. Our findings also suggest that odours directly acquired from resin serve no primary function as nestmate recognition cues. The lack of consistency among colonies plus the complex results of the third and fourth experiments highlight the need for further research on the role of nest materials and cuticular profiles in understanding nestmate recognition in T. angustula.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Nestmate discrimination plays an important role in preserving the integrity of social insect colonies. It is known to occur in the primitively eusocial wasp Ropalidia marginata in which non-nestmate conspecifics are not allowed to come near a nest. However, newly eclosed females are accepted in foreign colonies, suggesting that such individuals may not express the cues that permit differentiation between nestmates and non-nestmates. As cuticular hydrocarbons (CHCs) have been implicated as chemosensory cues used in nestmate recognition in other species, we investigated, using bioassays and chemical analyses, whether CHCs can play a role in nestmate recognition in R. marginata. We found that individuals can be differentiated according to colony membership using their CHC profiles, suggesting a role of CHCs in nestmate discrimination. Non-nestmate CHCs of adult females received more aggression than nestmate CHCs, thereby showing that CHCs are used as cues for nestmate recognition. Contrarily, and as expected, CHCs of newly eclosed females were not discriminated against when presented to a foreign colony. Behavioural sequence analysis revealed the behavioural mechanism involved in sensing nestmate recognition cues. We also found that newly eclosed females had a different CHC profile from that of adult females, thereby providing an explanation for why young females are accepted in foreign colonies. (C) 2013 The Association for the Study of Animal Behaviour. Published by Elsevier Ltd. All rights reserved.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Nestmate recognition is fundamental for the maintenance of social organization in insect nests. It is becoming well recognized that cuticle hydrocarbons mediate the recognition process, although the origin of recognition cues in stingless bees remains poorly explored. The present study investigates the effects of endogenously-produced and environmentally-acquired components in cuticular hydrocarbons in stingless bees. The tests are conducted using colonies of Plebeia droryana Friese and Plebeia remota Holmberg. Recognition tests are performed with four different groups: conspecific nestmates, conspecific non-nestmates, heterospecifics and conspecific, genetically-related individuals that emerge in a heterospecific nest. This last group is produced by introducing brood cells of P. droryana into a P. remota colony, and the resulting adult bees are tested for acceptance 10 days after emergence. For all groups, 15 individuals are sampled for chemical analysis. The results show the acceptance of all conspecific nestmates, and the rejection of almost every conspecific non-nestmate and every heterospecific bee. Genetically-related individuals emerging from heterospecific nests present intermediate rejection (66.7% rejection). Chemical analysis shows that P. droryana individuals emerging in a P. remota nest have small amounts of alkene and diene isomers found in P. remota cuticle that are not found in workers from the natal nest. The data clearly show that the majority of the compounds present in P. droryana cuticle are endogenously produced, although a few unsaturated compounds are acquired from the environment, increasing the chemical differences and, consequently, the rejection percentages.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The specialist digger wasp Trachypus boharti Rubio-Espina preys exclusively on males of the stingless bee Scaptotrigona postica Latreille 1807, although the hunting attacks involve both male and worker bees of S. postica and members of its own species. To understand the mechanism of prey selection, the cuticular hydrocarbon patterns of workers and males of S. postica are analyzed in detail, and the mandibular secretion of males is examined. The cuticular profiles of males and workers are distinctively different. The major group of cuticular compounds, heptacosene isomers, is twice as abundant in workers as in males. There is no clear distinction between worker and male mandibular secretions. Such a distinct and straightforward caste-specific difference in cuticular hydrocarbons could function as a recognition cue by which T. boharti distinguishes between workers and males of S. postica.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The Dufour's gland is found closely associated with the sting apparatus of all female hymenopterans, playing multiple roles among bees. In some species of Bombus the gland may be involved in production of nestmate recognition pheromones, but in B. terrestris its function is not certain yet. The morphology of the :Dufour's gland of B. terrestris queens and the ultrastructural features of its cells were studied in different ages and behavioural stages using routine transmission electron microscopy. Measurements of the length and the diameter of the gland in the same conditions were also made. The Dufour's gland of the queen increases significantly in size (both in length and in diameter) with age and reproductive activity the ultrastructural features of the gland show electrondense material that comes from the haemolymph. This material is also present in the intercellular spaces, and is conducted to the subcuticular space, to be released directly into the glandular lumen. Hence at least part of the secretion is probably taken up directly from the haemolymph. The ultrastructural features indicate a more active phase of the gland corresponding to the period of egg-laying of the queen, and a decrease in activity when the queen is in hibernation as well as after the competition point. In conclusion, the gland is probably involved in reproduction, more specifically, in the marking off eggs.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Termites are eusocial insects that have a peculiar and intriguing system of communication using pheromones. The termite pheromones are composed of a blend of chemical substances and they coordinate different social interactions or activities, including foraging, building, mating, defense, and nestmate recognition. Some of these sociochemicals are volatile, spreading in the air, and others are contact pheromones, which are transmitted by trophallaxis and grooming. Among the termite semiochemicals, the most known are alarm, trail, sex pheromones, and hydrocarbons responsible for the recognition of nestmates. The sources of the pheromones are exocrine glands located all over the termite body. The principal exocrine structures considered pheromone-producing glands in Isoptera are the frontal, mandibular, salivary or labial, sternal, and tergal glands. The frontal gland is the source of alarm pheromone and defensive chemicals, but the mandibular secretions have been little studied and their function is not well established in Isoptera. The secretion of salivary glands involves numerous chemical compounds, some of them without pheromonal function. The worker saliva contains a phagostimulating pheromone and probably a building pheromone, while the salivary reservoir of some soldiers contains defensive chemicals. The sternal gland is the only source of trail-following pheromone, whereas sex pheromones are secreted by two glandular sources, the sternal and tergal glands. To date, the termite semiochemicals have indicated that few molecules are involved in their chemical communication, that is, the same compound may be secreted by different glands, different castes and species, and for different functions, depending on the concentration. In addition to the pheromonal parsimony, recent studies also indicate the occurrence of a synergic effect among the compounds involved in the chemical communication of Isoptera. (C) 2010 Elsevier B.V.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Intercolonial aggression is being used to delimit foraging territory in termite species of subterranean termites. The advance of the introduced pest termite Coptotermes havilandi Holmgren in the interior of São Paulo State is increasing its economic impact as well as its interspecific and intraspecific competition in Brazil. In order to evaluate the intraspecific agonism among different colonies collected in urban areas of Sȧo Paulo State were set up a series of preliminary bioassays. Different combination of nestmates from field colonies of C. havilandi of Rio Claro city showed lack of agonistic behavior. Nevertheless, encounters among individuals from São Paulo and Rio Claro cities showed agonistic behaviors. These preliminary results suggest that caution should be taken in using intercolonial aggression to delimit the foraging territory of C. havilandi colonies in São Paulo State.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In social insects, cuticular hydrocarbons are involved in species, kin, caste and nestmate recognition. Gas chromatography and mass spectrometry were used to compare the cuticular hydrocarbon composition of workers, males and queens of Melipona bicolor. The cuticular hydrocarbon composition of this species was found to consist mainly of C23, C25:1, C25, C27:1, C27, C29:1 and C29, which are already present in imagoes that have not yet abandoned the brood cell. This composition varied quantitatively and qualitatively between and within the castes and sexes. The newly emerged workers and young queens (virgins) had similar cuticular hydrocarbon profiles, which were different from those of the males. When the females start executing their tasks in the colony, the cuticular hydrocarbon profile differences appear. The workers have less variety, while the queens conserve or increase the number of cuticular hydrocarbon compounds. The queens have more abdominal tegumentary glands than the workers, which apparently are the source of the new cuticular compounds.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We investigated whether Melipona quadrifasciata worker mandibular gland secretions contribute directly to their cuticular hydrocarbon profile. The mandibular gland secretion composition and cuticular surface compounds of newly emerged worker bees, nurse bees, and foragers were determined by gas chromatography and mass spectrometry and compared. Both the mandibular gland secretions and the cuticular surface compounds of all worker stages were found to be composed almost exclusively of hydrocarbons. Although the relative proportion of hydrocarbons from the cuticular surface and gland secretion was statistically different, there was a high similarity in the qualitative composition between these structures in all groups of bees.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The ability to discriminate nestmates from non-nestmates in insect societies is essential to protect colonies from conspecific invaders. The acceptance threshold hypothesis predicts that organisms whose recognition systems classify recipients without errors should optimize the balance between acceptance and rejection. In this process, cuticular hydrocarbons play an important role as cues of recognition in social insects. The aims of this study were to determine whether guards exhibit a restrictive level of rejection towards chemically distinct individuals, becoming more permissive during the encounters with either nestmate or non-nestmate individuals bearing chemically similar profiles. The study demonstrates that Melipona asilvai (Hymenoptera: Apidae: Meliponini) guards exhibit a flexible system of nestmate recognition according to the degree of chemical similarity between the incoming forager and its own cuticular hydrocarbons profile. Guards became less restrictive in their acceptance rates when they encounter non-nestmates with highly similar chemical profiles, which they probably mistake for nestmates, hence broadening their acceptance level.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Cuticular hydrocarbons play important roles as chemical signatures of individuals, castes, sex and brood. They also can mediate the regulation of egg laying in ants, by informing directly or indirectly the reproductive status of queens. In this study we asked whether cuticular hydrocarbon profiles are correlated with castes and sex of Camponotus textor. Cuticular hydrocarbons were extracted from part of a mature colony (80 workers, 27 major workers, 27 queens, 27 virgin queens and 27 males). Results showed that cuticular hydrocarbons varied quantitatively and qualitatively among the groups and this variation was sufficiently strong to allow separation of castes and genders. We discuss the specificity of some compounds as possible regulatory compounds of worker tasks and reproduction in C. textor.