38 resultados para needleless elctrospinning


Relevância:

70.00% 70.00%

Publicador:

Resumo:

Mass production of nanofibers from needleless electrospinning shows great potential in research and development of nanofibers. However, how to improve the electrospinning performance so as to achieve high quality nanofibers is still of great challenge. In this study, airflow has been applied to optimize upward needleless electrospinning from ring spinneret. Effects of airflow speed and the position of airflow on the nanofiber quality and production rate have been investigated. It has been found that thinner and more uniform nanofibers were produced when airflow was applied to needleless electrospinning system. It also improved the collected nonwoven membrane, resulting in better nanofibrous structure of the as-spun nanofibers. Application of airflow on needleless electrospinning would further benefit the development of mass production of nanofibers from needleless electrospinning.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Shock waves are one of the most efficient mechanisms of energy dissipation observed in nature. In this study, utilizing the instantaneous mechanical impulse generated behind a micro-shock wave during a controlled explosion, a novel nonintrusive needleless vaccine delivery system has been developed. It is well-known that antigens in the epidermis are efficiently presented by resident Langerhans cells, eliciting the requisite immune response, making them a good target for vaccine delivery. Unfortunately, needle-free devices for epidermal delivery have inherent problems from the perspective of the safety and comfort of the patient. The penetration depth of less than 100 mu m in the skin can elicit higher immune response without any pain. Here we show the efficient utilization of our needleless device (that uses micro-shock waves) for vaccination. The production of liquid jet was confirmed by high-speed microscopy, and the penetration in acrylamide gel and mouse skin was observed by confocal microscopy. Salmonella enterica serovar Typhimurium vaccine strain pmrG-HM-D (DV-STM-07) was delivered using our device in the murine salmonellosis model, and the effectiveness of the delivery system for vaccination was compared with other routes of vaccination. Vaccination using our device elicits better protection and an IgG response even at a lower vaccine dose (10-fold less) compared to other routes of vaccination. We anticipate that our novel method can be utilized for effective, cheap, and safe vaccination in the near future.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, we demonstrated that a thin metal disk can be used as nozzle to electrospin PVA nanofibres on a large-scale. With the rotation of a disk covered with a thin layer of electrically charged PVA solution, a large number of fibres were electrospun simultaneously from two sides of the disk and deposited on the electrode collector. The fibre production rate can be as high as 6.0 glhr, which is about 270 times higher than that of a corresponding normal needle based electrospinning system (0.022 g/hr). The effects of applied voltage, the distance between the disk nozzle and collector, and PVA concentration on the fibre morphology were examined. The dependency of fibre diameter on the PV A concentration showed a similar trend to that for a conventional electrospinning system using a syringe needle nozzle, but the diameter distribution was slightly wider for the disk electrospun fibres. The profiles of electric field strength in disk electrospinning showed considerable dependence on the disk thickness, with a thin disk exhibiting similar electric field strength profile to that of a needle electrospinning system.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this study, we demonstrated the needleless electrospinning of poly(vinyl alcohol) (PVA) nanofibers with two nozzles, a rotating disk and a cylinder, and examined the effect of the nozzle shape on the electrospinning process and resultant fiber morphology. The disk nozzle needed a relatively low applied voltage to initiate fiber formation, and the fibers were mainly formed on the top disk edge. Also, the PVA concentration had little influence on the disk electrospinning process (up to 11 wt %). In comparison, the cylinder electrospinning showed a higher dependence on the applied voltage and polymer concentration. The fibers were initiated from the cylinder ends first and then from the entire cylinder surface only if the applied voltage were increased to a certain level. With the same polymer solution, the critical voltage needed to generate nanofibers from the disk nozzle was lower than that needed to generate nanofibers from the cylinder. Both electrospinning systems could produce uniform nanofibers, but the fibers produced from the disk nozzle were finer than those from the cylinder when the operating conditions were the same. A thin disk (8 cm in diameter and 2 mm thick) could produce nanofibers at a rate similar to that of a cylinder of the same diameter but 100 times wider (i.e., 20 cm long). Finite element analysis of electric field profiles of the nozzles revealed a concentrated electric field on the disk edge. For the cylinder nozzle, an uneven distribution of the electric field intensity profile along the nozzle surface was observed. The field lines were mainly concentrated on the cylinder ends, with a much lower electric field intensity formed in the middle surface area. At the same applied voltage, the electric field intensity on the disk edge was much higher than that on the cylinder end. These differences in the electric field intensity profiles could explain the differences in the fiber fineness and rate of the nanofibers produced from these two nozzles. These findings will benefit the design and further development of large-scale electrospinning systems for the mass production of nanofibers for advanced applications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this article, we have demonstrated a novel needleless electrospinning of PVA nanofibers by using a conical metal wire-coil as spinneret. Multiple polymer jets were observed to generate on the coil surface. Up to 70 kV electric voltage can be applied to this needleless electrospinning nozzle without causing corona discharge. Compared with conventional needle electrospinning, this needleless electrospinning system produced finer nanofibers on a much larger scale, and the fiber processing ability showed a much greater dependence on the applied voltage. Finite element calculation indicates that the electric field intensity profiles for the two systems are also quite different. This novel concept of using wire coil as the electrospinning nozzle will contribute to the further development of new large-scale needleless electrospinning system for nanofiber production.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this study, we have demonstrated that a rotating metal wire coil can be used as a nozzle to electrospin nanofibers on a large-scale. Without using any needles, the rotating wire coil, partially immersed in a polymer solution reservoir, can pick up a thin layer of charged polymer solution and generate a large number of nanofibers from the wire surface simultaneously. This arrangement significantly increases the nanofiber productivity. The fiber productivity was found to be determined by the coil dimensions, applied voltage and polymer concentration. The dependency of fiber diameter on the polymer concentration showed a similar trend to that for a conventional electrospinning system using a syringe needle nozzle, but the coil electrospun fibers were thinner with narrower diameter distribution. The profiles of electric field strength in the coil electrospinning was calculated and showed concentrated electric field intensity on the wire surface.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this study, different wire coils have been used as electrodes for needless electrospinning. Very thin and uniform nanofibres have been produced, and the fibre productivity is much higher than existing electrospinning systems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Elcctrospinning is a very useful technique to produce polymeric nanofibers for diverse applications. The conventional needle-based electrospinning system has VCIY limited fiber productivity and a key challenge has been to develop electrospinning systems that can produce uniform nanofibcrs on a large scale l-3.
In this study, we have demonstrated that a rotating metal wire coil can be used as a nozzle to eiectrospin nanofibers on a large-scale. Without using any needles, the rotating wire coil, partially immersed in a polymer solution reservoir, can pick up a thin layer of charged polymer solution and generate a large number of nanofibers from the wire surface simultaneously. This arrangement significantly increases the nanofiber productivity.
The fiber productivity was found to be determined by the coil dimensions, such as wire diameter, coil radius and distance, and coil length. The effects of applied voltage, the distance bctv,lcen the coil nozzle and collector, and polymer concentration on the fiber
morphology were examined. The dependency of fiber diameter on the polymer concentration showed a similar trend to that for a conventional electrospinning system using a syringe needle nozzle, but the diameter distribution was narrower for the
coil electrospun fibers.
The profiles of electric fIeld strength in coil electrospinning was calculated and showed
concentrated electrical field intensity on the top wire surface. This novel concept of using wire coil as the electrospinning nozzle will contribute to the further development of new large-scale needleless electrospinning systems for nanofiber production.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The fibre generator shape and dimension are key factors affecting the needleless electrospinning process and fibre fineness. In this work, cylinder with rounded rim, disc and ball were used as spinnerets to electrospin polyvinyl alcohol and polyacrylonitrile solutions. A finite element method was used to analyse how the spinneret geometry affected the electric field generated during electrospinning and the associated changes in fibre diameter and productivity. For cylinder spinnerets, increasing the rim radius reduced the discrepancy of electric field intensity between the cylinder end and middle area, which affected the fibre productivity. The electrospinning failed to operate when the rim radius was over 20 mm. With decreasing cylinder diameter, the electric field intensity in the middle area increased, improving the fibre productivity. Thinner disc spinnerets increased the electric field intensity, resulting in finer nanofibres and higher productivities. Ball spinnerets produced evenly distributed electric field, but failed to electrospin fibres when the diameters were below 60 mm. It has been found that strong and narrowly distributed electric field in the fibre-generating area can significantly facilitate the mass production of quality nanofibres.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Electrospinning is a simple, but efficient and versatile, technology to produce polymeric nanofibers for widely diverse applications in both textile and non-textile areas [1]. This technique has been shown many advantages such as universality in processing polymeric materials, eases of controlling the fiber diameter and functionalizing nanofibers through adjusting solution composition for electrospinning, and flexibility to generate fibrous membranes of various geometries. Although the novel applications of electrospun nanofibers have been extensively explored [2], the technology development for mass electrospinning of nanofibers has been hampered.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Electrospinning technique has attracted a lot of interests recently, although it was invented in as early as 1934 by Anton (Anton, 1934). A basic electrospinning setup normally comprises a high voltage power supply, a syringe needle connected to power supply, and a counter-electrode collector as shown in Fig. 1. During electrospinning, a high electric voltage is applied to the polymer solution, which highly electrifies the solution droplet at the needle tip (Li & Xia, 2004). As a result, the solution droplet at the needle tip receives electric forces, drawing itself toward the opposite electrode, thus deforming into a conical shape (also known as “Taylor cone” (Taylor, 1969)). When the electric force overcomes the surface tension of the polymer solution, the polymer solution ejects off the tip of the “Taylor cone” to form a polymer jet. The charged jet is stretched by the strong electric force into a fine filament. Randomly deposited dry fibers can be obtained on the collector due to the evaporation of solvent in the filament. There are many factors affecting the electrospinning process and fiber properties, including polymer materials (e.g. polymer structure, molecular weight, solubility), solvent (e.g. boiling point, dielectric properties), solution properties (e.g. viscosity, concentration, conductivity, surface tension), operating conditions (e.g. applied voltage, collecting distance, flow rate), and ambient environment (e.g. temperature, gas environment, humidity).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The conventional electrospinning often uses a needle-like nozzle to produce nanofibers with a very low production rate. Despite the enormous application potential, needle electrospun nanofibers meet difficulties in broad applications in practice, due to the lack of an economic and efficient way to scale up the electrospinning process. Recently, needleless electrospinning has emerged as a new electrospinning mode and shown ability to produce nanofibers on large-scales. It has been established that the fiber generator, also referred to as “spinneret” in this paper, in needleless electrospinning plays a key role in scaling up the nanofiber production. This paper summarizes the recent advances in the development of needleless spinnerets and their influences on electrospinning process, nanofiber quality, and productivity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have demonstrated that polystyrene (PS) nanofibers having an ordered surface line texture can be produced on a large scale from a PS solution of acetone and N,N′-dimethylformamide (2/1, vol/vol) by a needleless electrospinning technique using a disc as fiber generator. The formation of the unusual surface feature was investigated and attributed to the voids formed on the surface of jets due to the fast evaporation of acetone at the early stage of electrospinning, and subsequent elongation and solidification turning the voids into ordered lines on fiber surface. In comparison with the nanofibers electrospun by a conventional needle electrospinning using the same solution, the disc electrospun fibers were finer with similar diameter distribution. The fiber production rate for the disc electrospinning was 62 times higher than that of the conventional electrospinning. Fourier transform infrared spectroscopy and X-ray diffraction measurements indicated that the PS nanofibers produced from the two electrospinning techniques showed no significant difference in chemical component, albeit slightly higher crystallinity in the disc spun nanofibers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Polyacrylonitrile (PAN) nanofibers were prepared by a needleless electrospinning method using three rotating fiber generators, cylinder, disc and coil. The effects of the spinneret shape on the electrospinning process and resultant fiber morphology were examined. The disc spinneret needed the lowest voltage to initiate fiber formation, followed by the coil and cylinder. Compared to cylinder, the disc and coil produced finer fibers with narrower diameter distribution. The productivity of a coil was 23 g/hr, which was much larger than that of the cylinder spinneret having the same length and diameter. Finite elementary method was used to analyze the electric field. Stronger electric field was found to be formed on disc and coil surface, which concentrated on the disc circumferential edge and coil wire surface, respectively. For cylinder, the high intensity electric field was mainly concentrated on the end area. Concentrated electric field on the fiber generating surface could be used to explain the better electrospinning performance of coil, which may form a new concept for designing needleless electrospinning spinnerets.