847 resultados para natural language understanding
Resumo:
This work describes a program, called TOPLE, which uses a procedural model of the world to understand simple declarative sentences. It accepts sentences in a modified predicate calculus symbolism, and uses plausible reasoning to visualize scenes, resolve ambiguous pronoun and noun phrase references, explain events, and make conditional predications. Because it does plausible deduction, with tentative conclusions, it must contain a formalism for describing its reasons for its conclusions and what the alternatives are. When an inconsistency is detected in its world model, it uses its recorded information to resolve it, one way or another. It uses simulation techniques to make deductions about creatures motivation and behavior, assuming they are goal-directed beings like itself.
Resumo:
This paper surveys some of the fundamental problems in natural language (NL) understanding (syntax, semantics, pragmatics, and discourse) and the current approaches to solving them. Some recent developments in NL processing include increased emphasis on corpus-based rather than example- or intuition-based work, attempts to measure the coverage and effectiveness of NL systems, dealing with discourse and dialogue phenomena, and attempts to use both analytic and stochastic knowledge. Critical areas for the future include grammars that are appropriate to processing large amounts of real language; automatic (or at least semi-automatic) methods for deriving models of syntax, semantics, and pragmatics; self-adapting systems; and integration with speech processing. Of particular importance are techniques that can be tuned to such requirements as full versus partial understanding and spoken language versus text. Portability (the ease with which one can configure an NL system for a particular application) is one of the largest barriers to application of this technology.
Resumo:
The integration of speech recognition with natural language understanding raises issues of how to adapt natural language processing to the characteristics of spoken language; how to cope with errorful recognition output, including the use of natural language information to reduce recognition errors; and how to use information from the speech signal, beyond just the sequence of words, as an aid to understanding. This paper reviews current research addressing these questions in the Spoken Language Program sponsored by the Advanced Research Projects Agency (ARPA). I begin by reviewing some of the ways that spontaneous spoken language differs from standard written language and discuss methods of coping with the difficulties of spontaneous speech. I then look at how systems cope with errors in speech recognition and at attempts to use natural language information to reduce recognition errors. Finally, I discuss how prosodic information in the speech signal might be used to improve understanding.
Resumo:
Natural language understanding is to specify a computational model that maps sentences to their semantic mean representation. In this paper, we propose a novel framework to train the statistical models without using expensive fully annotated data. In particular, the input of our framework is a set of sentences labeled with abstract semantic annotations. These annotations encode the underlying embedded semantic structural relations without explicit word/semantic tag alignment. The proposed framework can automatically induce derivation rules that map sentences to their semantic meaning representations. The learning framework is applied on two statistical models, the conditional random fields (CRFs) and the hidden Markov support vector machines (HM-SVMs). Our experimental results on the DARPA communicator data show that both CRFs and HM-SVMs outperform the baseline approach, previously proposed hidden vector state (HVS) model which is also trained on abstract semantic annotations. In addition, the proposed framework shows superior performance than two other baseline approaches, a hybrid framework combining HVS and HM-SVMs and discriminative training of HVS, with a relative error reduction rate of about 25% and 15% being achieved in F-measure.
Resumo:
Human relationships have long been studied by scientists from domains like sociology, psychology, literature, etc. for understanding people's desires, goals, actions and expected behaviors. In this dissertation we study inter-personal relationships as expressed in natural language text. Modeling inter-personal relationships from text finds application in general natural language understanding, as well as real-world domains such as social networks, discussion forums, intelligent virtual agents, etc. We propose that the study of relationships should incorporate not only linguistic cues in text, but also the contexts in which these cues appear. Our investigations, backed by empirical evaluation, support this thesis, and demonstrate that the task benefits from using structured models that incorporate both types of information. We present such structured models to address the task of modeling the nature of relationships between any two given characters from a narrative. To begin with, we assume that relationships are of two types: cooperative and non-cooperative. We first describe an approach to jointly infer relationships between all characters in the narrative, and demonstrate how the task of characterizing the relationship between two characters can benefit from including information about their relationships with other characters in the narrative. We next formulate the relationship-modeling problem as a sequence prediction task to acknowledge the evolving nature of human relationships, and demonstrate the need to model the history of a relationship in predicting its evolution. Thereafter, we present a data-driven method to automatically discover various types of relationships such as familial, romantic, hostile, etc. Like before, we address the task of modeling evolving relationships but don't restrict ourselves to two types of relationships. We also demonstrate the need to incorporate not only local historical but also global context while solving this problem. Lastly, we demonstrate a practical application of modeling inter-personal relationships in the domain of online educational discussion forums. Such forums offer opportunities for its users to interact and form deeper relationships. With this view, we address the task of identifying initiation of such deeper relationships between a student and the instructor. Specifically, we analyze contents of the forums to automatically suggest threads to the instructors that require their intervention. By highlighting scenarios that need direct instructor-student interactions, we alleviate the need for the instructor to manually peruse all threads of the forum and also assist students who have limited avenues for communicating with instructors. We do this by incorporating the discourse structure of the thread through latent variables that abstractly represent contents of individual posts and model the flow of information in the thread. Such latent structured models that incorporate the linguistic cues without losing their context can be helpful in other related natural language understanding tasks as well. We demonstrate this by using the model for a very different task: identifying if a stated desire has been fulfilled by the end of a story.
Resumo:
This paper describes a system for the computer understanding of English. The system answers questions, executes commands, and accepts information in normal English dialog. It uses semantic information and context to understand discourse and to disambiguate sentences. It combines a complete syntactic analysis of each sentence with a "heuristic understander" which uses different kinds of information about a sentence, other parts of the discourse, and general information about the world in deciding what the sentence means. It is based on the belief that a computer cannot deal reasonably with language unless it can "understand" the subject it is discussing. The program is given a detailed model of the knowledge needed by a simple robot having only a hand and an eye. We can give it instructions to manipulate toy objects, interrogate it about the scene, and give it information it will use in deduction. In addition to knowing the properties of toy objects, the program has a simple model of its own mentality. It can remember and discuss its plans and actions as well as carry them out. It enters into a dialog with a person, responding to English sentences with actions and English replies, and asking for clarification when its heuristic programs cannot understand a sentence through use of context and physical knowledge.
Resumo:
Process Modeling is a widely used concept for understanding, documenting and also redesigning the operations of organizations. The validation and usage of process models is however affected by the fact that only business analysts fully understand them in detail. This is in particular a problem because they are typically not domain experts. In this paper, we investigate in how far the concept of verbalization can be adapted from object-role modeling to process models. To this end, we define an approach which automatically transforms BPMN process models into natural language texts and combines different techniques from linguistics and graph decomposition in a flexible and accurate manner. The evaluation of the technique is based on a prototypical implementation and involves a test set of 53 BPMN process models showing that natural language texts can be generated in a reliable fashion.
Resumo:
Clinical text understanding (CTU) is of interest to health informatics because critical clinical information frequently represented as unconstrained text in electronic health records are extensively used by human experts to guide clinical practice, decision making, and to document delivery of care, but are largely unusable by information systems for queries and computations. Recent initiatives advocating for translational research call for generation of technologies that can integrate structured clinical data with unstructured data, provide a unified interface to all data, and contextualize clinical information for reuse in multidisciplinary and collaborative environment envisioned by CTSA program. This implies that technologies for the processing and interpretation of clinical text should be evaluated not only in terms of their validity and reliability in their intended environment, but also in light of their interoperability, and ability to support information integration and contextualization in a distributed and dynamic environment. This vision adds a new layer of information representation requirements that needs to be accounted for when conceptualizing implementation or acquisition of clinical text processing tools and technologies for multidisciplinary research. On the other hand, electronic health records frequently contain unconstrained clinical text with high variability in use of terms and documentation practices, and without commitmentto grammatical or syntactic structure of the language (e.g. Triage notes, physician and nurse notes, chief complaints, etc). This hinders performance of natural language processing technologies which typically rely heavily on the syntax of language and grammatical structure of the text. This document introduces our method to transform unconstrained clinical text found in electronic health information systems to a formal (computationally understandable) representation that is suitable for querying, integration, contextualization and reuse, and is resilient to the grammatical and syntactic irregularities of the clinical text. We present our design rationale, method, and results of evaluation in processing chief complaints and triage notes from 8 different emergency departments in Houston Texas. At the end, we will discuss significance of our contribution in enabling use of clinical text in a practical bio-surveillance setting.
Resumo:
This introduction provides an overview of the state-of-the-art technology in Applications of Natural Language to Information Systems. Specifically, we analyze the need for such technologies to successfully address the new challenges of modern information systems, in which the exploitation of the Web as a main data source on business systems becomes a key requirement. It will also discuss the reasons why Human Language Technologies themselves have shifted their focus onto new areas of interest very directly linked to the development of technology for the treatment and understanding of Web 2.0. These new technologies are expected to be future interfaces for the new information systems to come. Moreover, we will review current topics of interest to this research community, and will present the selection of manuscripts that have been chosen by the program committee of the NLDB 2011 conference as representative cornerstone research works, especially highlighting their contribution to the advancement of such technologies.
Resumo:
Natural language processing has achieved great success in a wide range of ap- plications, producing both commercial language services and open-source language tools. However, most methods take a static or batch approach, assuming that the model has all information it needs and makes a one-time prediction. In this disser- tation, we study dynamic problems where the input comes in a sequence instead of all at once, and the output must be produced while the input is arriving. In these problems, predictions are often made based only on partial information. We see this dynamic setting in many real-time, interactive applications. These problems usually involve a trade-off between the amount of input received (cost) and the quality of the output prediction (accuracy). Therefore, the evaluation considers both objectives (e.g., plotting a Pareto curve). Our goal is to develop a formal understanding of sequential prediction and decision-making problems in natural language processing and to propose efficient solutions. Toward this end, we present meta-algorithms that take an existent batch model and produce a dynamic model to handle sequential inputs and outputs. Webuild our framework upon theories of Markov Decision Process (MDP), which allows learning to trade off competing objectives in a principled way. The main machine learning techniques we use are from imitation learning and reinforcement learning, and we advance current techniques to tackle problems arising in our settings. We evaluate our algorithm on a variety of applications, including dependency parsing, machine translation, and question answering. We show that our approach achieves a better cost-accuracy trade-off than the batch approach and heuristic-based decision- making approaches. We first propose a general framework for cost-sensitive prediction, where dif- ferent parts of the input come at different costs. We formulate a decision-making process that selects pieces of the input sequentially, and the selection is adaptive to each instance. Our approach is evaluated on both standard classification tasks and a structured prediction task (dependency parsing). We show that it achieves similar prediction quality to methods that use all input, while inducing a much smaller cost. Next, we extend the framework to problems where the input is revealed incremen- tally in a fixed order. We study two applications: simultaneous machine translation and quiz bowl (incremental text classification). We discuss challenges in this set- ting and show that adding domain knowledge eases the decision-making problem. A central theme throughout the chapters is an MDP formulation of a challenging problem with sequential input/output and trade-off decisions, accompanied by a learning algorithm that solves the MDP.
Resumo:
We present a text watermarking scheme that embeds a bitstream watermark Wi in a text document P preserving the meaning, context, and flow of the document. The document is viewed as a set of paragraphs, each paragraph being a set of sentences. The sequence of paragraphs and sentences used to embed watermark bits is permuted using a secret key. Then, English language sentence transformations are used to modify sentence lengths, thus embedding watermarking bits in the Least Significant Bits (LSB) of the sentences’ cardinalities. The embedding and extracting algorithms are public, while the secrecy and security of the watermark depends on a secret key K. The probability of False Positives is extremely small, hence avoiding incidental occurrences of our watermark in random text documents. Majority voting provides security against text addition, deletion, and swapping attacks, further reducing the probability of False Positives. The scheme is secure against the general attacks on text watermarks such as reproduction (photocopying, FAX), reformatting, synonym substitution, text addition, text deletion, text swapping, paragraph shuffling and collusion attacks.
Resumo:
The design and development of process-aware information systems is often supported by specifying requirements as business process models. Although this approach is generally accepted as an effective strategy, it remains a fundamental challenge to adequately validate these models given the diverging skill set of domain experts and system analysts. As domain experts often do not feel confident in judging the correctness and completeness of process models that system analysts create, the validation often has to regress to a discourse using natural language. In order to support such a discourse appropriately, so-called verbalization techniques have been defined for different types of conceptual models. However, there is currently no sophisticated technique available that is capable of generating natural-looking text from process models. In this paper, we address this research gap and propose a technique for generating natural language texts from business process models. A comparison with manually created process descriptions demonstrates that the generated texts are superior in terms of completeness, structure, and linguistic complexity. An evaluation with users further demonstrates that the texts are very understandable and effectively allow the reader to infer the process model semantics. Hence, the generated texts represent a useful input for process model validation.
Resumo:
This paper presents a symbolic navigation system that uses spatial language descriptions to inform goal-directed exploration in unfamiliar office environments. An abstract map is created from a collection of natural language phrases describing the spatial layout of the environment. The spatial representation in the abstract map is controlled by a constraint based interpretation of each natural language phrase. In goal-directed exploration of an unseen office environment, the robot links the information in the abstract map to observed symbolic information and its grounded world representation. This paper demonstrates the ability of the system, in both simulated and real-world trials, to efficiently find target rooms in environments that it has never been to previously. In three unexplored environments, it is shown that on average the system travels only 8.42% further than the optimal path when using only natural language phrases to complete navigation tasks.