859 resultados para natriuretic peptide receptor C
Resumo:
Mammalian natriuretic peptides (NPs) have been extensively investigated for use as therapeutic agents in the treatment of cardiovascular diseases. Here, we describe the isolation, sequencing and tridimensional homology modeling of the first C-type natriuretic peptide isolated from scorpion venom. In addition, its effects on the renal function of rats and on the mRNA expression of natriuretic peptide receptors in the kidneys are delineated. Fractionation of Tityusserrulatus venom using chromatographic techniques yielded a peptide with a molecular mass of 2190.64Da, which exhibited the pattern of disulfide bridges that is characteristic of a C-type NP (TsNP, T. serrulatus Natriuretic Peptide). In the isolated perfused rat kidney assay, treatment with two concentrations of TsNP (0.03 and 0.1μg/mL) increased the perfusion pressure, glomerular filtration rate and urinary flow. After 60min of treatment at both concentrations, the percentages of sodium, potassium and chloride transport were decreased, and the urinary cGMP concentration was elevated. Natriuretic peptide receptor-A (NPR-A) mRNA expression was down regulated in the kidneys treated with both concentrations of TsNP, whereas NPR-B, NPR-C and CG-C mRNAs were up regulated at the 0.1μg/mL concentration. In conclusion, this work describes the isolation and modeling of the first natriuretic peptide isolated from scorpion venom. In addition, examinations of the renal actions of TsNP indicate that its effects may be related to the activation of NPR-B, NPR-C and GC-C. © 2013 Elsevier Ltd.
Resumo:
Natriuretic peptides, produced in the heart, bind to the natriuretic peptide receptor A (NPRA) and cause vasodilation and natriuresis important in the regulation of blood pressure. We here report that mice lacking a functional Npr1 gene coding for NPRA have elevated blood pressures and hearts exhibiting marked hypertrophy with interstitial fibrosis resembling that seen in human hypertensive heart disease. Echocardiographic evaluation of the mice demonstrated a compensated state of systemic hypertension in which cardiac hypertrophy and dilatation are evident but with no reduction in ventricular performance. Nevertheless, sudden death, with morphologic evidence indicative in some animals of congestive heart failure and in others of aortic dissection, occurred in all 15 male mice lacking Npr1 before 6 months of age, and in one of 16 females in our study. Thus complete absence of NPRA causes hypertension in mice and leads to cardiac hypertrophy and, particularly in males, lethal vascular events similar to those seen in untreated human hypertensive patients.
Resumo:
Dephosphorylation of the natriuretic peptide receptor-A (NPR-A) is hypothesized to mediate its desensitization in response to atrial natriuretic peptide (ANP) binding. Recently, we identified six phosphorylation sites within the kinase homology domain of NPR-A and determined that the conversion of these residues to alanine abolished the ability of the receptor to be phosphorylated or to be activated by ANP and ATP. In an attempt to generate a form of NPR-A that mimics a fully phosphorylated receptor but that is resistant to dephosphorylation, we engineered a receptor variant (NPR-A-6E) containing glutamate substitutions at all six phosphorylation sites. Consistent with the known ability of negatively charged glutamate residues to substitute functionally, in some cases, for phosphorylated residues, we found that NPR-A-6E was activated 10-fold by ANP and ATP. As determined by guanylyl cyclase assays, the hormone-stimulated activity of the wild-type receptor declined over time in membrane preparations in vitro, and this loss was blocked by the serine/threonine protein phosphatase inhibitor microcystin. In contrast, the activity of NPR-A-6E was more linear with time and was unaffected by microcystin. The nonhydrolyzable ATP analogue adenosine 5′-(β,γ-imino)-triphosphate was half as effective as ATP in stimulating the wild-type receptor but was equally as potent in stimulating NPR-A-6E, suggesting that ATP is required to keep the wild-type but not 6E variant phosphorylated. Finally, the desensitization of NPR-A-6E in whole cells was markedly blunted compared with that of the wild-type receptor, consistent with its inability to shed the negative charge from its kinase homology domain via dephosphorylation. These data provide the first direct test of the requirement for dephosphorylation in guanylyl cyclase desensitization and they indicate that it is an essential component of this process.
Resumo:
B-type natriuretic peptide (BNP) is a prognostic and diagnostic marker for heart failure (HF). An anti-inflammatory, cardio-protective role for BNP was proposed. In cardiovascular diseases including pressure overload-induced HF, perivascular inflammation and cardiac fibrosis are, in part, mediated by monocyte chemoattractant protein (MCP)1-driven monocyte migration. We aimed to determine the role of BNP in monocyte motility to MCP1. A functional BNP receptor, natriuretic peptide receptor-A (NPRA) was identified in human monocytes. BNP treatment inhibited MCP1-induced THP1 (monocytic leukemia cells) and primary monocyte chemotaxis (70 and 50 %, respectively). BNP did not interfere with MCP1 receptor expression or with calcium. BNP inhibited activation of the cytoskeletal protein RhoA in MCP1-stimulated THP1 (70 %). Finally, BNP failed to inhibit MCP1-directed motility of monocytes from patients with hypertension (n = 10) and HF (n = 6) suggesting attenuation of this anti-inflammatory mechanism in chronic heart disease. We provide novel evidence for a direct role of BNP/NPRA in opposing human monocyte migration and support a role for BNP as a cardio-protective hormone up-regulated as part of an adaptive compensatory response to combat excess inflammation.
Resumo:
BACKGROUND: Mechanical overload of the heart is associated with excessive deposition of extracellular matrix proteins and the development of cardiac fibrosis. This can result in reduced ventricular compliance, diastolic dysfunction, and heart failure. Extracellular matrix synthesis is regulated primarily by cardiac fibroblasts, more specifically, the active myofibroblast. The influence of mechanical stretch on human cardiac fibroblasts' response to pro-fibrotic stimuli, such as transforming growth factor beta (TGFβ), is unknown as is the impact of stretch on B-type natriuretic peptide (BNP) and natriuretic peptide receptor A (NPRA) expression. BNP, acting via NPRA, has been shown to play a role in modulation of cardiac fibrosis.
METHODS AND RESULTS: The effect of cyclical mechanical stretch on TGFβ induction of myofibroblast differentiation in primary human cardiac fibroblasts and whether differences in response to stretch were associated with changes in the natriuretic peptide system were investigated. Cyclical mechanical stretch attenuated the effectiveness of TGFβ in inducing myofibroblast differentiation. This finding was associated with a novel observation that mechanical stretch can increase BNP and NPRA expression in human cardiac fibroblasts, which could have important implications in modulating myocardial fibrosis. Exogenous BNP treatment further reduced the potency of TGFβ on mechanically stretched fibroblasts.
CONCLUSION: We postulate that stretch induced up-regulation of the natriuretic peptide system may contribute to the observed reduction in myofibroblast differentiation.
Resumo:
Nous avons précédemment montré que l’activation du récepteur natriurétique de type C (NPR-C) par son agoniste spécifique, le C-ANP4-23, atténue l’augmentation de la prolifération des cellules du muscle lisse vasculaire (CMLV) induite par les peptides vasoactifs (Ang II, ET-1 et l’AVP). Puisque les CMLV provenant de rats spontanément hypertendus (SHR) montrent elles aussi un taux de prolifération plus élevé que leur contrôle, les CMLV de rats Wystar-Kyoto (WKY), nous avons entrepris cette étude dans le but de déterminer si C-ANP4-23 peut également diminuer le taux élevé de prolifération des CMLV de SHR et, le cas échéant déterminer les mécanismes responsables de cette réponse. Nos résultats montrent que le taux de prolifération des CMLV de SHR est significativement plus élevé que celui des CMLV de WKY et que la présence de C-ANP4-23 diminue de manière-dose dépendante le taux de prolifération des CMLV de SHR. En plus, l’expression des protéines de la phase G1 du cycle cellulaire, la cycline D1, la kinase dépendante des cyclines 2 (cdk2) et la forme phosphorylée de la protéine du rétinoblastome (pRb) est augmentée dans les CMLV de SHR comparativement aux CMLV de WKY et est atténué par C-ANP4-23. De plus, nos résultats montrent que les inhibiteurs du complexe cycline D1/cdk4 (NSC 625987) et cdk2 (NU2058) diminue le taux de prolifération élevé des CMLV de SHR. Les CMLV de SHR montrent également un taux de phosphorylation de ERK1/2 et d’AKT et est atténué par C-ANP4-23. De plus, le taux d’expression élevé des protéines cycline D1, cdk2 et pRb des CMLV de SHR est diminué par la toxine pertussis qui inactive la protéine Giα, le PD 98095, un inhibiteur de MEK de la voie des MAPK, du wortmannin, un inhibiteur de la PI3-K et finalement du losartan, un antagoniste du récepteur AT1. Ces résultats suggèrent que l’activation du récepteur NPR-C par C-ANP4-23 diminue le taux de prolifération élevé des CMLV de SHR par une régulation à la baisse des composantes du cycle cellulaire via l’inhibition de la protéine Giα et des voies signalétique MAP kinase/PI3-K.
Resumo:
Arterial hyperpolarization to acetylcholine (ACh) reflects coactivation of KCa3.1 (IKCa) channels and KCa2.3 (SKCa) channels in the endothelium that transfers through myoendothelial gap junctions and diffusible factor(s) to affect smooth muscle relaxation (endothelium-derived hyperpolarizing factor [EDHF] response). However, ACh can differentially activate KCa3.1 and KCa2.3 channels, and we investigated the mechanisms responsible in rat mesenteric arteries. KCa3.1 channel input to EDHF hyperpolarization was enhanced by reducing external [Ca2+]o but blocked either with forskolin to activate protein kinase A or by limiting smooth muscle [Ca2+]i increases stimulated by phenylephrine depolarization. Imaging [Ca2+]i within the endothelial cell projections forming myoendothelial gap junctions revealed increases in cytoplasmic [Ca2+]i during endothelial stimulation with ACh that were unaffected by simultaneous increases in muscle [Ca2+]i evoked by phenylephrine. If gap junctions were uncoupled, KCa3.1 channels became the predominant input to EDHF hyperpolarization, and relaxation was inhibited with ouabain, implicating a crucial link through Na+/K+-ATPase. There was no evidence for an equivalent link through KCa2.3 channels nor between these channels and the putative EDHF pathway involving natriuretic peptide receptor-C. Reconstruction of confocal z-stack images from pressurized arteries revealed KCa2.3 immunostain at endothelial cell borders, including endothelial cell projections, whereas KCa3.1 channels and Na+/K+-ATPase {alpha}2/{alpha}3 subunits were highly concentrated in endothelial cell projections and adjacent to myoendothelial gap junctions. Thus, extracellular [Ca2+]o appears to modify KCa3.1 channel activity through a protein kinase A-dependent mechanism independent of changes in endothelial [Ca2+]i. The resulting hyperpolarization links to arterial relaxation largely through Na+/K+-ATPase, possibly reflecting K+ acting as an EDHF. In contrast, KCa2.3 hyperpolarization appears mainly to affect relaxation through myoendothelial gap junctions. Overall, these data suggest that K+ and myoendothelial coupling evoke EDHF-mediated relaxation through distinct, definable pathways.
Resumo:
In this minireview we describe the involvement of the atrial natriuretic peptide (ANP) in cardiovascular pathophysiology and exercise. The ANP has a broad homeostatic role and exerts complex effects on the cardio-circulatory hemodynamics, it is produced by the left atrium and has a key role in regulating sodium and water balance in mammals and humans. The dominant stimulus for its release is atrial wall tension, commonly caused by exercise. The ANP is involved in the process of lipolysis through a cGMP signaling pathway and, as a consequence, reducing blood pressure by decreasing the sensitivity of vascular smooth muscle to the action of vasoconstrictors and regulate fluid balance. The increase of this hormone is associated with better survival in patients with chronic heart failure (CHF). This minireview provides new evidence based on recent studies related to the beneficial effects of exercise in patients with cardiovascular disease, focusing on the ANP. © 2012 de Almeida et al; licensee BioMed Central Ltd.
Resumo:
The synthesis and preclinical evaluation of [(99m)Tc]Demomedin C in GRPR-expressing models are reported. Demomedin C resulted by coupling a Boc-protected N(4)-chelator to neuromedin C (human GRP(18-27)), which, after (99m)Tc-labeling, afforded [(99m)Tc]Demomedin C. Demomedin C showed high affinity and selectivity for the GRPR during receptor autoradiography on human cancer samples (IC(50) in nM: GRPR, 1.4 ± 0.2; NMBR, 106 ± 18; and BB(3)R, >1000). It triggered GRPR internalization in HEK-GRPR cells and Ca(2+) release in PC-3 cells (EC(50) = 1.3 nM). [(99m)Tc]Demomedin C rapidly and specifically internalized at 37 °C in PC-3 cells and was stable in mouse plasma. [(99m)Tc]Demomedin C efficiently and specifically localized in human PC-3 implants in mice (9.84 ± 0.81%ID/g at 1 h pi; 6.36 ± 0.85%ID/g at 4 h pi, and 0.41 ± 0.07%ID/g at 4 h pi block). Thus, human GRP-based radioligands, such as [(99m)Tc]Demomedin C, can successfully target GRPR-expressing human tumors in vivo while displaying attractive biological features--e.g. higher GRPR-selectivity--vs their frog-homologues.
Resumo:
Guanylyl cyclase-A (NPR-A; GC-A) is the major and possibly the only receptor for atrial natriuretic peptide (ANP) or B-type natriuretic peptide. Although mice deficient in GC-A display an elevated blood pressure, the resultant cardiac hypertrophy is much greater than in other mouse models of hypertension. Here we overproduce GC-A in the cardiac myocytes of wild-type or GC-A null animals. Introduction of the GC-A transgene did not alter blood pressure or heart rate as a function of genotype. Cardiac myocyte size was larger (approximately 20%) in GC-A null than in wild-type animals. However, introduction of the GC-A transgene reduced cardiac myocyte size in both wild-type and null mice. Coincident with the reduction in myocyte size, both ANP mRNA and ANP content were significantly reduced by overexpression of GC-A, and this reduction was independent of genotype. This genetic model, therefore, separates a regulation of cardiac myocyte size by blood pressure from local regulation by a GC-mediated pathway.
Resumo:
Longitudinal bone growth is determined by endochondral ossification that occurs as chondrocytes in the cartilaginous growth plate undergo proliferation, hypertrophy, cell death, and osteoblastic replacement. The natriuretic peptide family consists of three structurally related endogenous ligands, atrial, brain, and C-type natriuretic peptides (ANP, BNP, and CNP), and is thought to be involved in a variety of homeostatic processes. To investigate the physiological significance of CNP in vivo, we generated mice with targeted disruption of CNP (Nppc−/− mice). The Nppc−/− mice show severe dwarfism as a result of impaired endochondral ossification. They are all viable perinatally, but less than half can survive during postnatal development. The skeletal phenotypes are histologically similar to those seen in patients with achondroplasia, the most common genetic form of human dwarfism. Targeted expression of CNP in the growth plate chondrocytes can rescue the skeletal defect of Nppc−/− mice and allow their prolonged survival. This study demonstrates that CNP acts locally as a positive regulator of endochondral ossification in vivo and suggests its pathophysiological and therapeutic implication in some forms of skeletal dysplasia.
Resumo:
The present study has examined expression and circulating levels of C-type natriuretic peptide (CNP) in the euryhaline bull shark, Carcharhinus leucas. Complementary DNA and deduced amino acid sequence for CNP in C leucas were determined by RACE methods. Homology of CNP amino acid sequence in C. leucas was high both for proCNP and for mature CNP when compared with previously identified elasmobranch CNPs. Mature CNP sequence in C. leucas was identical to that in Triakis seyllia and Seyliorhinus canicula. Levels of expression of CNP mRNA were significantly decreased in the atrium but did not change in either the brain or ventricle following acclimation to a SW environment. However, circulating levels of CNP significantly increased from 86.0 +/- 7.9 fmol ml(-1) in FW to 144.9 +/- 19.5 fmol ml(-1) in SW. The results presented demonstrate that changes in environmental salinity influences both synthesis of CNP from the heart and also circulating levels in C. leucas. Potential stimulus for release and modes of action are discussed. (c) 2005 Elsevier Inc. All rights reserved.
Resumo:
This study examined the effect of transfer to increased environmental salinity on the circulating levels of angiotensin II (ANG II), C-type natriuretic peptide (CNP), and arginine vasotocin (AVT) in the euryhaline elasmobranch, Carcharhinus letteas. Plasma levels of ANG 11 and CNP were significantly increased in C. leucas chronically acclimated to seawater (SW) in comparison to freshwater (FW) acclimated fish. There was no difference in plasma AVT levels. Acute transfer of FW fish to 75% SW induced an increase in plasma ANG II levels within 12 h, and subsequent transfer from 75 to 100% SW further increased plasma ANG 11 levels at both 24 and 72 h. No change in plasma CNP was observed during acute transfer to increased salinity. However, a significant increase in plasma AVT levels was observed following 96 h in 75% SW and 24 h in 100% SW. In chronically SW acclimated C leucas plasma osmolality, sodium, chloride, and Urea were all significantly higher than FW acclimated fish but there was no difference in haematocrit. Acute transfer of C letteas to 75% SW induced a significant increase in plasma osmolality, sodium and urea concentrations within 96 h of transfer. Subsequent transfer from 75 to 100% SW induced a further increase in these variables within 24 h in addition to a significant increase in plasma chloride above control levels. Haematocrit did not differ between the experimental and control groups throughout the acute study. Circulating levels of ANG 11 were significantly correlated to plasma, sodium, chloride, and urea concentrations during acclimation to SW. Conversely, circulating levels of CNP and AVT did not correlate to plasma osmolytes, however, CNP was significantly correlated to haematocrit during acclimation to seawater. (c) 2005 Elsevier Inc. All rights reserved.
Resumo:
Patients with rheumatoid arthritis (RA) have a significantly higher risk of coronary heart disease, despite being less likely to report symptoms of angina, and are more likely to experience unrecognised myocardial infarction and sudden cardiac death than non-RA controls.1 Furthermore, left ventricular diastolic dysfunction has been described in up to 40% of patients with RA.2...