977 resultados para native forest


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The introduction describes productive forest in Queensland and summaries the principles of native forest management that achieve optimum productivity. Case study 1 deals with thinning an even-aged regrowth forest. It shows how thinning the stand actively manages the future composition and structure to improve productivity in the best stems and increase the commercial value of the next harvest. Case study 2 describes restoring productivity in a high-graded spotted gum - ironbark forest. It shows that defective and non-saleable trees should be removed so they do not repress the future stand; and that regeneration should be thinned, retaining the best trees in adequate growing space. Case study 3 discusses on-farm value adding for hardwood forests. It shows how long-term viability and maximum productivity and returns depend on the best management practices and knowing how to obtain the best returns from a range of forest products. Case study 4 examines integrated harvesting in a eucalypt forest. It shows how integrating the harvest enables the full range of timber products are harvested and sold for their maximum value while reducing the amount of waste.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Some Eucalyptus species are widely used as a plantation crop in tropical and subtropical regions. One reason for this is the diversity of end uses, but the main reason is the high level of wood production obtained from commercial plantings. With the advancement of biotechnology it will be possible to expand the geographical area in which eucalypts can be used as commercial plantation crops, especially in regions with current climatic restrictions. Despite the popularity of eucalypts and their increasing range, questions still exist, in both traditional planting areas and in the new regions: Can eucalypts invade areas of native vegetation, causing damage to natural ecosystems biodiversity?The objective of this study it was to assess whether eucalypts can invade native vegetation fragments in proximity to commercial stands, and what factors promote this invasive growth. Thus, three experiments were established in forest fragments located in three different regions of Brazil. Each experiment was composed of 40 plots (1 m(2) each one), 20 plots located at the border between the forest fragment and eucalypts plantation, and 20 plots in the interior of the forest fragments. In each experimental site, the plots were paired by two soil exposure conditions, 10 plots in natural conditions and 10 plots with soil exposure (no plant and no litter). During the rainy season, 2 g of eucalypts seeds were sown in each plot, including Eucalyptus grandis or a hybrid of E. urophylla x E. grandis, the most common commercial eucalypt species planted in the three region. At 15, 30, 45, 90, 180, 270 and 360 days after sowing, we assessed the number of seedlings of eucalypts and the number of seedlings of native species resulting from natural regeneration. Fifteen days after sowing, the greatest number of eucalypts seedlings (37 m(-2)) was observed in the plots with lower luminosity and exposed soil. Also, for native species, it was observed that exposed soil improved natural germination reaching the highest number of 163 seedlings per square meter. Site and soil exposure were the factors that have the greatest influence on seed germination of both eucalypt and native species. However, 270 days after sowing, eucalypt seedlings were not observed at any of the three experimental sites. The result shows the inability of eucalypts to adapt to condition outside of their natural range. However, native species demonstrated their strong capacity for natural regeneration in forest fragments under the same conditions where eucalypts were seeded. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ferralsols have high structural stability, although structural degradation has been observed to result from forest to tillage or pasture conversion. An experimental series of forest skidder passes in an east Amazonian natural forest was performed for testing the effects of mechanical stress during selective logging operations on a clay-rich Ferralsol under both dry and wet soil conditions. Distinct ruts formed up to 25 cm depth only under wet conditions. After nine passes the initially very low surface bulk density of between 0.69 and 0.80 g cm(-3) increased to 1.05 g cm(-3) in the wet soil and 0.92 g cm(-3) in the dry soil. Saturated hydraulic conductivities, initially > 250 mm h(-1), declined to a minimum of around 10 mm h(-1) in the wet soil after the first pass, and in the dry soil more gradually after nine passes. The contrasting response of bulk density and saturated hydraulic conductivity is explained by exposure of subsoil material at the base of the ruts where macrostructure rapidly deteriorated under wet conditions. We attribute the resultant moderately high hydraulic conductivities to the formation of stable microaggregates with fine sand to coarse silt textures. We conclude that the topsoil macrostructure of Ferralsols is subject to similar deterioration to that of Luvisols in temperate zones. The stable microstructure prevents marked compaction and decrease in hydraulic conductivity under wetter and more plastic soil conditions. However, typical tropical storms may regularly exceed the infiltration capacity of the deformed soils. In the deeper ruts water may concentrate and cause surface run-off, even in gently sloping areas. To avoid soil erosion, logging operations in sloping areas should therefore be restricted to dry soil conditions when rut formation is minimal.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The influences of clearing native vegetation (Caatinga) in contour strips at 25 cm vertical interval on evaporation losses in cleared strips, annual runoff efficiency and annuall soil loss on gently sloped micro-waterheds in the arid zones of Northeast Brazil are reported. The alternate native vegetation (Caatinga) strips function very effectively as windbreaks thus reducing evaporation losses substantially in the leeward cleared strips. The runoff measured at the micro-watershed with cleared strips was many-fold lower than the runoff obtained at a completely denuded watershed even when it was protected by narrow based channel terraces. However, the annual runoff efficiency can be significantly increased in a strip cleared watershed if narrow based channel terraces are provided on the lower side of cleared strips. The annual soil losses in strip cleared watersheds as well as completely denuded waterhed of gentle slopes were negligible. Thus clearing land in alternate contour strips on a micro-watersheds shall substantially improve crop water use efficiency without creating any significant erosion problems. Additionally this treatment will increase runoff for water harvesting for irrigation purposes.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Native Mediterranean forests in Australia are dominated by two tree genera, Eucalyptus and Acacia, while Pinus and Eucalyptus dominate plantation forestry. In native forests, there is a high diversity of phloem and wood borers across several families in the Coleoptera and Lepidoptera. In the Coleoptera, cerambycid beetles (Cerambycidae), jewel beetles (Buprestidae), bark, ambrosia and pinhole beetles (Curculionidae) and pinworms (Lymexelidae) are some of the most commonly found beetles attacking eucalypts and acacias. In the Lepidoptera, wood moths (Cossidae), ghost moths (Hepialidae) and borers in the Xyloryctidae (subfamily Xyloryctinae) are most common. In contrast to native forests, there is a much more limited range of native insects present in Australian plantations, particularly in exotic Pinus spp. plantations, although eucalypt plantations do share some borers in common with native forests. This chapter reviews the importance of these borers in Australian forests primarily from an economic perspective (i.e. those species that cause damage to commercial tree species) and highlights a paucity of native forest species that commonly kill trees relative to the large scales regularly seen in North America and Europe.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The effect of conversion from forest-to-pasture upon soil carbon stocks has been intensively discussed, but few studies focus on how this land-use change affects carbon (C) distribution across soil fractions in the Amazon basin. We investigated this in the 20 cm depth along a chronosequence of sites from native forest to three successively older pastures. We performed a physicochemical fractionation of bulk soil samples to better understand the mechanisms by which soil C is stabilized and evaluate the contribution of each C fraction to total soil C. Additionally, we used a two-pool model to estimate the mean residence time (MRT) for the slow and active pool C in each fraction. Soil C increased with conversion from forest-to-pasture in the particulate organic matter (> 250 mu m), microaggregate (53-250 mu m), and d-clay (< 2 mu m) fractions. The microaggregate comprised the highest soil C content after the conversion from forest-to-pasture. The C content of the d-silt fraction decreased with time since conversion to pasture. Forest-derived C remained in all fractions with the highest concentration in the finest fractions, with the largest proportion of forest-derived soil C associated with clay minerals. Results from this work indicate that microaggregate formation is sensitive to changes in management and might serve as an indicator for management-induced soil carbon changes, and the soil C changes in the fractions are dependent on soil texture.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Individuals' home ranges are constrained by resource distribution and density, population size, and energetic requirements. Consequently, home ranges and habitat selection may vary between individuals of different sex and reproductive conditions. Whilst home ranges of bats are well-studied in native habitats, they are often not well understood in modified landscapes, particularly exotic plantation forests. Although Chalinolobus tuberculatus (Vespertilionidae, Chiroptera) are present in plantation forests throughout New Zealand their home ranges have only been studied in native forest and forest-agricultural mosaic and no studies of habitat selection that included males had occurred in any habitat type. Therefore, we investigated C. tuberculatus home range and habitat selection within exotic plantation forest. Home range sizes did not differ between bats of different reproductive states. Bats selected home ranges with higher proportions of relatively old forest than was available. Males selected edges with open unplanted areas within their home ranges, which females avoided. We suggest males use these edges, highly profitable foraging areas with early evening peaks in invertebrate abundance, to maintain relatively low energetic demands. Females require longer periods of invertebrate activity to fulfil their needs so select older stands for foraging, where invertebrate activity is higher. These results highlight additional understanding gained when data are not pooled across sexes. Mitigation for harvest operations could include ensuring that areas suitable for foraging and roosting are located within a radius equal to the home range of this bat species.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

While they are among the most ecologically important animals within forest ecosystems, little is known about how bats respond to habitat loss and fragmentation. The threatened lesser short-tailed bat (Mystacina tuberculata), considered to be an obligate deep-forest species, is one of only 2 extant land mammals endemic to New Zealand; it plays a number of important roles within native forests, including pollination and seed dispersal, and rarely occurs in modified forests. We used radiotelemetry to study the movements, roosting behavior, and habitat use of M. tuberculata within a fragmented landscape comprised of 3 main habitat types: open space (harvested forest and pastoral land), native forests, and exotic pine plantations. We found that the bats had smaller home-range areas and travelled shorter nightly distances than populations investigated previously from contiguous native forest. Furthermore, M. tuberculata occupied all 3 habitat types, with native forest being preferred overall. However, individual variation in habitat selection was high, with some bats preferring exotic plantation and open space over native forest. Roosting patterns were similar to those previously observed in contiguous forest; individual bats often switched between communal and solitary roosts. Our findings indicate that M. tuberculata exhibit some degree of behavioral plasticity that allows them to adapt to different landscape mosaics and exploit alternative habitats. To our knowledge, this is the first such documentation of plasticity in habitat use for a bat species believed to be an obligate forest-dweller.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Spotted gum dominant forests occur from Cooktown in northern Queensland (Qld) to Orbost in Victoria (Boland et al. 2006) and these forests are commercially very important with spotted gum the most commonly harvested hardwood timber in Qld and one of the most important in New South Wales (NSW). Spotted gum has a wide range of end uses from solid wood products through to power transmission poles and generally has excellent sawing and timber qualities (Hopewell 2004). The private native forest resource in southern Qld and northern NSW is a critical component of the hardwood timber industry (Anon 2005, Timber Qld 2006) and currently half or more of the native forest timber resource harvested in northern NSW and Qld is sourced from private land. However, in many cases productivity on private lands is well below what could be achieved with appropriate silvicultural management. This project provides silvicultural management tools to assist extension staff, land owners and managers in the south east Qld and north eastern NSW regions. The intent was that this would lead to improvement of the productivity of the private estate through implementation of appropriate management. The other intention of this project was to implement a number of silvicultural experiments and demonstration sites to provide data on growth rates of managed and unmanaged forests so that landholders can make informed decisions on the future management of their forests. To assist forest managers and improve the ability to predict forest productivity in the private resource, the project has developed: • A set of spotted gum specific silvicultural guidelines for timber production on private land that cover both silvicultural treatment and harvesting. The guidelines were developed for extension officers and property owners. • A simple decision support tool, referred to as the spotted gum productivity assessment tool (SPAT), that allows an estimation of: 1. Tree growth productivity on specific sites. Estimation is based on the analysis of site and growth data collected from a large number of yield and experimental plots on Crown land across a wide range of spotted gum forest types. Growth algorithms were developed using tree growth and site data and the algorithms were used to formulate basic economic predictors. 2. Pasture development under a range of tree stockings and the expected livestock carrying capacity at nominated tree stockings for a particular area. 3. Above-ground tree biomass and carbon stored in trees. •A series of experiments in spotted gum forests on private lands across the study area to quantify growth and to provide measures of the effect of silvicultural thinning and different agro-forestry regimes. The adoption and use of these tools by farm forestry extension officers and private land holders in both field operations and in training exercises will, over time, improve the commercial management of spotted gum forests for both timber and grazing. Future measurement of the experimental sites at ages five, 10 and 15 years will provide longer term data on the effects of various stocking rates and thinning regimes and facilitate modification and improvement of these silvicultural prescriptions.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Knowledge of tropical raptor habitat use is limited and yet a thorough understanding is vital when trying to conserve endangered species. We used a well studied, reintroduced population of the vulnerable Mauritius Kestrel Falco punctatus to investigate habitat preferences in a modified landscape. We constructed a high resolution digital habitat map and radiotracked 13 juvenile Kestrels to quantify habitat preferences. We distinguished seven habitat types in our study area and tracked Kestrels from 71 to 130 days old during which they dispersed from their natal territory and settled within a home-range after reaching independence. Mean home-range size was 0.95 km(2) characterized by a bimodal pattern of intensity around the natal site and post-independence home-range. Compositional analysis showed that home-ranges were located non-randomly with respect to habitat but there was no evidence to suggest differential use of habitats within home-ranges. Native and semi-invaded forest and grassland were consistently preferred, whereas agriculture was used significantly less than other habitats. No difference was found between the available length of edge dividing native forest and grassland within a home-range when compared to that available within a 2.35-km buffer around their nest-site, based on the maximum distance a juvenile was found to disperse. Repeating the analysis in three dimensions gave very similar results. Our results suggest that Mauritius Kestrels are not obligate forest dwellers as was once thought but can also exploit open habitats such as grassland. Kestrels may be using isolated mature trees within grassland as vantage points for hunting in the same way as they use the natural stratified forest structure. We suggest that the avoidance of agriculture is partly due to a lack of such vantage points. The conservation importance of forest degradation and agricultural encroachment is highlighted and comparisons with the habitat preferences of other tropical falcons are discussed.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Soil organic matter (SOM) increases with time as landscape is restored. Studying SOM development along restored forest chronosequences would be useful in clarifying some of the uncertainties in quantifying C turnover rates with respect to forest clearance and ensuing restoration. The development of soil organic matter in the mineral soils was studied at four depths in a 16-year-old restored jarrah forest chronosequence. The size-separated SOM fractionation along with δ13C isotopic shift was utilised to resolve the soil C temporal and spatial changes with developing vegetation. The restored forest chronosequence revealed several important insights into how soil C is developing with age. Litter accumulation outpaced the native forest levels in 12 years after restoration. The surface soils, in general, showed increase in total C with age, but this trend was not clearly observed at lower depths. C accumulation was observed with increasing restoration age in all three SOM size-fractions in the surface 0–2 cm depth. These biodiverse forests show a trend towards accumulating C in recalcitrant stable forms, but only in the surface 0–2 cm mineral soil. A significant reverse trend was observed for the moderately labile SOM fraction for lower depths with increasing restoration age. Correlating the soil δ13C with total C concentration revealed the re-establishment of the isotopically depleted labile to enriched refractory C continuum with soil depth for the older restored sites. This implied that from a pedogenic perspective, the restored soils are developing towards the original native soil carbon profile.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Decomposition was studied in a reciprocal litter transplant experiment to examine the effects of forest type, litter quality and their interaction on leaf decomposition in four tropical forests in south-east Brazil. Litterbags were used to measure decomposition of leaves of one tree species from each forest type: Calophyllum brasiliense from restinga forest; Guapira opposita from Atlantic forest; Esenbeckia leiocarpa from semi-deciduous forest; and Copaifera langsdorffii from cerradao. Decomposition rates in rain forests (Atlantic and restinga) were twice as fast as those in seasonal forests (semi-deciduous and cerradao), suggesting that intensity and distribution of precipitation are important predictors of decomposition rates at regional scales. Decomposition rates varied by species, in the following order: E. leiocarpa > C. langsdorffii > G. opposita > C. brasiliense. However, there was no correlation between decomposition rates and chemical litter quality parameters: C:N, C:P, lignin concentration and lignin:N. The interaction between forest type and litter quality was positive mainly because C. langsdorffii decomposed faster than expected in its native forest. This is a potential indication of a decomposer`s adaptation to specific substrates in a tropical forest. These findings suggest that besides climate, interactions between decomposers and plants might play an essential role in decomposition processes and it must be better understood.