961 resultados para nanoporous membranes


Relevância:

70.00% 70.00%

Publicador:

Resumo:

Anodized nanotubular and nanoporous zirconia membranes are of interest for applications involving elevated temperatures in excess of 400 degrees C, such as templates for the synthesis of nanostructures, catalyst supports, fuel cells and sensors. Thermal stability is thus an important attribute. The study described in this paper shows that the as-anodized nanoporous membranes can withstand more adverse temperature-time combinations than nanotubular membranes. Chemical treatment of the nanoporous membranes was found to further enhance their thermal stability. The net result is an enhancement in the limiting temperature from 500 degrees C for nanotubular membranes to 1000 degrees C for the chemically treated nanoporous membranes. The reasons for membrane degradation on thermal exposure and the mechanism responsible for retarding the same are discussed within the framework of the theory of thermal grooving.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This work describes the chemical modification by Tiron(R) molecules of the surface of SnO2 nanoparticles used to prepare nanoporous membranes. Samples prepared with Tiron(R) content between 1 and 20 wt% and fired at 400 C were characterised by X-Ray Powder Diffraction (XRPD), Extended X-ray Absorption Fine Structure (EXAFS), N-2 adsorption isotherms analysis and permeation experiments. XRPD and EXAFS results show a continuous reduction of crystallite size by increasing the Tiron(R) contents until 7.5 wt%. The control exercised by Tiron(R) modifying agent in crystallite growth allows the fine tuning of the average pore size that can be screened from 0.4 to 4 nm as the amount of grafted molecules decreases from 10 to 0 wt%. In consequence, the membrane cut-off can be screened from 1500 to 3500 g.mol(-1).

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Weiwei has been devoting to the alignment and characterisation of hexagonal lyotropic liquid crystalline nanostructure to uniform orientation by applying external fields. According to the Synchrotron small angle x-ray scattering results, it has produced distinct progress. This technique is aimed for improving the filtration efficiency of nanoporous membranes.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A novel interfacial structure consisting of long (up to 5 μm), thin (about 300 nm), highly-ordered, free-standing, highly-reproducible aluminum oxide nanobottles and long tubular nanocapsules attached to a rigid, thin (less than 1 μm) nanoporous anodic alumina membrane is fabricated by simple, fast, catalyst-free, environmentally friendly voltage-pulse anodization. A growth mechanism is proposed based on the formation of straight channels in alumina membrane by anodization, followed by neck formation due to a sophisticated voltage control during the process. This process can be used for the fabrication of alumina nanocontainers with highly controllable geometrical size and volume, vitally important for various applications such as material and energy storage, targeted drug and diagnostic agent delivery, controlled drug and active agent release, gene and biomolecule reservoirs, micro-biologically protected platforms, nano-bioreactors, tissue engineering and hydrogen storage.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Insulating nanoporous materials are promising platforms for soft-ionizing membranes; however, improvement in fabrication processes and the quality and high breakdown resistance of the thin insulator layers are needed for high integration and performance. Here, scalable fabrication of highly porous, thin, silicon dioxide membranes with controlled thickness is demonstrated using plasma-enhanced chemical-vapor-deposition. The fabricated membranes exhibit good insulating properties with a breakdown voltage of 1 × 107 V/cm. Our calculations suggest that the average electric field inside a nanopore of the membranes can be as high as 1 × 106 V/cm; sufficient for ionization of wide range of molecules. These metal–insulator–metal nanoporous arrays are promising for applications such soft ionizing membranes for mass spectroscopy.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Nanostructured TiO2 is one of the most commonly used materials in photocatalytic applications and photochemical solar cells. This article describes a method to synthesize nanoporous anatase TiO2 membranes directly on stainless steel (SS), an easily available substrate by anodization to form amorphous TiO2 and a subsequent heat treatment to convert it into anatase, the photoactive phase. To obtain adherent membranes with interfaces that are resistant to peeling, both anodization and heat treatment parameters need to be optimized to obtain a heterostructure that contains a Ti film between the TiO2 membrane and the substrate.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In this study, a unique method was adopted to design porous membranes through crystallization induced phase separation in PVDF/PMMA (poly(vinylidene fluoride)/poly(methyl methacrylate)) blends. By etching out PMMA, which segregates either in the interlamellar and/or in the interspherulitic regions of the blends, nanoporous hierarchical structures can be derived. Different nanoparticles like titanium dioxide (TiO2), silver nanoparticle (Ag) decorated carbon nanotubes (Ag-CNTs), TiO2 decorated CNTs (TiO2-CNTs), Ag decorated TiO2 (Ag-TiO2) and Ag-TiO2 decorated CNTs (Ag@TiO2-CNTs) were synthesized and melt mixed with 80/20 PVDF/PMMA blends to render antibacterial activity to the membranes. Scanning electron microscopy (SEM) was used to study the crystalline morphology of the membranes. A significant improvement in the trans-membrane flux was obtained in the blends with Ag@TiO2 decorated CNTs as compared to the membranes derived from the neat blends, which can be attributed to the interconnected pores in these membranes. Both qualitative and quantitative studies of antifouling and antibacterial activity (using E. coli as a model bacterium) were performed using the standard plate count method. SEM micrographs clearly showed that the antifouling activity of the membranes was improved with addition of Ag@TiO2-CNTs. In the quantitative standard plate count method, the bacterial colony significantly decreased with the addition of Ag@TiO2-CNTs as against neat blends. This study opens a new avenue in the fabrication of polymer blend based membranes for water filtration.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Nanoporous titania nanoparticles (NTNs) were synthesized and used as an additive at a low concentration of 0.1-1 wt % in the fabrication of poly(ethersulfone) (PES) ultrafiltration membranes via non-solvent-induced phase separation. The structure and properties of nanoparticles were characterized using nitrogen sorption, X-ray diffraction, scanning electron microscopy, and transmission electron microscopy. The NTNs have a size distribution with a particle size of mainly <100 nm and have a Brunauer, Emmett, and Teller surface area of ∼100 m2 g-1. The modified membranes were fabricated and investigated in terms of their pure water flux, solute rejection, and fouling resistance. The water permeability and molecular weight cutoffs (MWCOs) of membranes were determined under constant-pressure filtration in dead-end mode at 100 kPa. The membrane fouling resistance was characterized under constant flux operation using bovine serum albumin as a model foulant. The membranes were characterized in terms of morphology, porosity, pore size distribution, energy-dispersive X-ray spectroscopy, contact angle goniometry, surface free energy, and viscosity of the dope solution. Overall, the modified membrane showed increased wettability and reduced surface free energy and pore size. The modified UF membrane with 0.5 wt % NTN loading exhibited improved fouling resistance (fouling rate of 0.58 kPa/min compared to a rate of 0.70 kPa/min for the control membrane) with ∼80% water flux recovery. The same membrane showed an ∼20% increase in water flux, an improvement in MWCO, and a narrower pore size distribution.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Rapid, simple, catalyst-free, room-temperature sonochemical fabrication of long (up to 30 mm), ultra-thin (about 20 nm), crystalline gold nanowires on nanoporous anodic alumina membranes is reported. It is demonstrated that the nanowires nucleate and grow inside the nanosized pores and then form a dense network on the bottom side of the membrane. A growth mechanism is proposed based on the formation of through channels in the Al2O3 membrane by sonochemical etching, followed by nanowire nucleation in the channels and their further extrusion out of the pores by acoustic cavitation. This process can be used for the fabrication of metal nanowires with highly controllable diameter and density, suitable for numerous applications such as nanoelectronic, nanofluidic, and optoelectronic components and devices.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Control over nucleation and growth of multi-walled carbon nanotubes in the nanochannels of porous alumina membranes by several combinations of posttreatments, namely exposing the membrane top surface to atmospheric plasma jet and application of standard S1813 photoresist as an additional carbon precursor, is demonstrated. The nanotubes grown after plasma treatment nucleated inside the channels and did not form fibrous mats on the surface. Thus, the nanotube growth mode can be controlled by surface treatment and application of additional precursor, and complex nanotube-based structures can be produced for various applications. A plausible mechanism of nanotube nucleation and growth in the channels is proposed, based on the estimated depth of ion flux penetration into the channels.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Simple, rapid, plasma-assisted synthesis of large-area arrays of vertically-aligned carbon nanowalls on highly-porous, transparent bare and gold-coated alumina membranes with the two pore sizes is reported. It is demonstrated that the complex patterns of vertically aligned nanowalls can nucleate and form different morphologies in the low-temperature plasmas. The process is stable, and the twofold change in the gas flow (10 and 20 sccm) does not noticeably influence the morphology of the nanowall pattern. Application of a thin (5 nm) gold layer to nanoporous membrane prior to the nanowall growth allows controlling the network morphology.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Osteogenic differentiation of various adult stem cell populations such as neural crest-derived stem cells is of great interest in the context of bone regeneration. Ideally, exogenous differentiation should mimic an endogenous differentiation process, which is partly mediated by topological cues. To elucidate the osteoinductive potential of porous substrates with different pore diameters (30 nm, 100 nm), human neural crest-derived stem cells isolated from the inferior nasal turbinate were cultivated on the surface of nanoporous titanium covered membranes without additional chemical or biological osteoinductive cues. As controls, flat titanium without any topological features and osteogenic medium was used. Cultivation of human neural crest-derived stem cells on 30 nm pores resulted in osteogenic differentiation as demonstrated by alkaline phosphatase activity after seven days as well as by calcium deposition after 3 weeks of cultivation. In contrast, cultivation on flat titanium and on membranes equipped with 100 nm pores was not sufficient to induce osteogenic differentiation. Moreover, we demonstrate an increase of osteogenic transcripts including Osterix, Osteocalcin and up-regulation of Integrin β1 and α2 in the 30 nm pore approach only. Thus, transplantation of stem cells pre-cultivated on nanostructured implants might improve the clinical outcome by support of the graft adherence and acceleration of the regeneration process.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The nanoporous structure of membrane varies in 3-dimensional (3-D) space and has remarkable influences on the filtration or desalination achieved, fouling potentials and therefore, the quality of yielded water. Knowledge of the 3-D nanoporous structure is thus vital to understanding and predicting its performance. A novel method by incorporating transmission electronic microtomography, image processing and 3-D reconstruction is introduced to characterize membranes with nano structures. The reconstruction algorithm allows for the visualization of 3-D nanoporous structure in a non-destructive way from any directions. This novel technique Ieads to in-depth understanding and accurate prediction of filtration performance.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cross-linked poly(ethylene glycol) diacrylate (PEGDA) membranes were prepared by polymerization in periodic nanostructured lyotropic liquid crystals (LLC) hexagonal phases under UV light. A series of membranes were prepared under different purification treatment conditions. Polarized light microscope was employed to determine the LLC phase texture of LLC system before and after polymerization. It is found that the LLC hexagonal structure retained to some degree after polymerization. The interior structures of final membranes were investigated with scanning electron microscope (SEM). The results suggested that purification process affect the structure retention.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The nanoporous structure of a membrane varies in a 3-dimensional (3-D) space and has remarkable influences on the filtration or desalination achieved, fouling potentials and therefore, the quality of yielded water. Knowledge of the 3-D nanoporous structure is thus vital to understanding and predicting its performance. A novel method by incorporating transmission electronic microtomography, image processing and 3-D reconstruction is introduced to characterize membranes with nano structures. The reconstruction algorithm allows for the visualization of 3-D nanoporous structure in a non-destructive way from any directions. This novel technique leads to in-depth understanding and accurate prediction of filtration performance.